Ahmadlou M, Karimi M, Alizadeh S, Shirzadi A, Parvinnejhad D, Shahabi H, Panahi M. 2019. Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA). Geocarto International. 34 (11):1252-1272.
Atashpaz-Gargari E, Lucas C. 2007. Imperialist Competitive Algorithm: An algorithm for optimization inspired by imperialistic competition. IEEE Congress on Evolutionary Computation. pp. 4661-4667.
Bubeck P, Botzen W, Aerts J. 2012. A review of risk perceptions and other factors that influence flood mitigation behavior. Risk Analysis. 32(9):1481–1495.
Bui DT, Pradhan B, Nampak H, Bui QT, Tran QA, Nguyen QP. 2016. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology. 540:317–330.
https://doi.org/10.1016/j.jhydrol.2016.06.027.
Bui QT, Nguyen QH, Nguyen XL, Pham VD, Nguyen HD, Pham VM. 2020. Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. Journal of Hydrology. 581, 124379.
https://doi.org/10.1016/j.jhydrol.2019.124379.
Bui TD, Panahi M, Shahabi H, Singh VP, Shirzadi A, Chapi K, Khosravi K, Chen W, Panahi S, Li S, Ahmad B. 2018. Novel Hybrid Evolutionary Algorithms for Spatial Prediction of Floods. Scientific Reports. 8:15364. DOI:10.1038/s41598-018-33755-7.
Chapi K, Singh VP, Shirzadi A, Shahabi H, Bui DT, Pham BT, Khosravi K, 2017. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental modelling and software. 95:229-245.
https://doi.org/10.1016/j.envsoft.2017.06.012.
Chen W, Li Y, Xue W, Shahabi H, Li S, Hong H, Ahmad BB. 2020. Modeling flood susceptibility using data-driven approaches of naïve bayes tree, alternating decision tree, and random forest methods. Science of the Total Environment. 701: 134979.
https://doi.org/10.1016/j.scitotenv.2019.134979.
Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A. 2019. An Ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of the Total Environment. 651(2): 2087-2096.
https://doi.org/10.1016/j.scitotenv.2018.10.064.
Dahri N, Abida H. 2017. Monte Carlo simulation-aided analytical hierarchy process (AHP) for flood susceptibility mapping in Gabes Basin (southeastern Tunisia). Environmental Earth Sciences. 76(7):1-14.
Darabi H, Choubin B, Rahmati O, Haghighi A, Pradhan B, Klove B. 2019. Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. Journal of Hydrology. 569:142–154.
https://doi.org/10.1016/j.jhydrol.2018.12.002.
Dickie JA, Parsons AJ. 2012. Eco‐geomorphological processes within grasslands, shrublands and badlands in the semi‐arid Karoo, South Africa. Land Degradation Development. 23(6):534-547.
Felicĺsimo Á, Cuartero A, Remondo J, Quirόs E. 2013. Mapping landslide susceptibility with logistiv regression, multiple adaptive regression splines, classification and regression tress, and maximum entropy methods: A comparative study. Landslides. 10:175-189. https://doi.org/10.1007/s10346-012-0320-1.
Gupta A. 2020. An Introduction to Large Rivers. John Wiley and Sons. Hampf A.C, Stella T, Berg-Mohnicke M, Kawohl T, Kilian M, Nendel C. 2020. Future yields of double-cropping systems in the Southern Amazon, Brazil, under climate change and technological development. Agricultural Systems. 177: 102707.
https://doi.org/10.1016/j.agsy.2019.102707.
Hong H, Pradhan B, Jebur MN, Bui DT, Xu C, Akgun A. 2016. Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines. Environmental Earth Science. 75: 40. https://doi.org/10.1007/s12665-015-4866-9.
Hong H, Tsangaratos P, Ilia I, Liu J, Zhu AX, Chen W. 2018. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Science of the total environment. 625:575-588.
https://doi.org/10.1016/j.scitotenv.2017.12.256.
Islam ARMT, Talukdar S, Mahato S, Kundu S, Eibek KU, Pham QB, Linh NTT. 2021. Flood susceptibility modelling using advanced ensemble machine learning models. Geoscience Frontiers. 12(3):101075.
Khosravi K, Melesse AM, Shahabi H, Shirzadi A, Chapi K, Hong H. 2019. Flood susceptibility mapping at Ningdu catchment, China using bivariate and data mining techniques. In Extreme Hydrology and Climate Variability. pp. 419-434.
https://doi.org/10.1016/B978-0-12-815998-9.00033-6.
Lee S, Kim JC, Jung HS, Lee MJ, Lee S. 2017. Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomatics, Natural Hazards and Risk. pp. 1-19.
Meles MB, Younger SE, Jackson CR, Du E, Drover D. 2020. Wetness index based on landscape position and topography (WILT): Modifying TWI to reflect landscape position. Journal Environmental Management. 255: 109863.
https://doi.org/10.1016/j.jenvman.2019.109863.
Miller JR, Ritter DF, Kochel RC. 1990. Morphometric assessment of lithologic controls on drainage basin evolution in the Crawford Upland, south-central Indiana. American Journal of Science. 290:569–599.
Mirzaei S, Vafakhah M, Pradhan B, Alavi SJ. 2021. Flood susceptibility assessment using extreme gradient boosting (EGB), Iran. Earth Science Informatics. 14(1):51-67.
Moghaddam DD, Pourghasemi HR, Rahmati O. 2019. Assessment of the contribution of Geo-Environmental Factors to Flood Inundation in a Semi-Arid Region of SW Iran: Comparison of Different Advanced Modeling Approaches. In Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques. pp. 59-78.
Opperman JJ, Galloway GE, Fargione J, Mount JF, Richter BD, Secchi S. 2009. Sustainable floodplains through large-scale reconnection to rivers, Science. 326(5959):1487–1488.
Pham BT, Lu C, Van Phong T, Nguyen HD, Van Le H, Tran TQ, Ta HT, Prakash I. 2021. Flood risk assessment using hybrid artificial intelligence models integrated with multi-criteria decision analysis in Quang Nam Province, Vietnam. Journal of Hydrology. 592: 125815.
https://doi.org/10.1016/j.jhydrol.2020.125815.
Rahmati O, Panahi M, Ghiasi SS, Deo RC, Tiefenbacher JP, Pradhan B, Bui DT. 2020. Hybridized neural fuzzy ensembles for dust source modeling and prediction. Atmospheric Environment. 224:117320.
https://doi.org/10.1016/j.atmosenv.2020.117320.
Rahmati O, Pourghasemi HR, Zeinivand H. 2016. Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golestan Province, Iran. Geocarto International. 31(1):42–70.
Rahmati O, Pourghasemi HR. 2017. Identification of Critical Flood Prone Areas in Data-Scarce and Ungauged Regions: A Comparison of Three Data Mining Models. Water Resource Management. 31:1473–1487. https://doi.org/10.1007/s11269-017-1589-6.
Saha A, Pal SC, Arabameri A, Blaschke T, Panahi S, Chowdhuri I, Chakrabortty R, Costache R, Arora A. 2021. Flood susceptibility assessment using novel ensemble of hyperpipes and support vector regression algorithms. Water. 13(2):241.
Sampson CC, Smith AM, Bates PD, Neal JC, Alfieri L, Freer JE. 2015. A high‐resolution global flood hazard model. Water Resources. 51(9):7358-7381.
https://doi.org/10.1002/2015WR016954.
Sarkar D, Mondal P. 2020. Flood vulnerability mapping using frequency ratio (FR) model: a case study on Kulik river basin, Indo-Bangladesh Barind region. Applied Water Science. 10(1):17. https://doi.org/10.1007/s13201-019-1102-x.
Sharifi Garmdareh E, Vafakhah M, Eslamian SS. 2018. Regional flood frequency analysis using support vector regression in arid and semi-arid regions of Iran. Hydrological Sciences Journal. 63(3):426-440.
Siahkamari S, Haghizadeh A, Zeinivand H, Tahmasebipour N, Rahmati O. 2018. Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto international. 33(9):927-941.
Sidel RC, Ochiai H. 2006. Landslides: Processes, Prediction, and Land use. Water Resource Monograph: 18, AGU books, Print ISBN: 9780875903224 |Online ISBN: 9781118665954 |DOI:10.1029/WM018. 312 p.
Stevaux JC, de Azevedo Macedo H, Assine ML, Silva A. 2020. Changing fluvial styles and backwater flooding along the Upper Paraguay River plains in the Brazilian Pantanal wetland. Geomorphology. 350:106906.
https://doi.org/10.1016/j.geomorph.2019.106906.
Tang X, Li J, Liu M, Liu W, Hong H. 2020. Flood susceptibility assessment based on a novel random Naïve Bayes method: A comparison between different factor discretization methods. Catena. 190:104536.
https://doi.org/10.1016/j.catena.2020.104536.
Termeh SVR, Kornejady A, Pourghasemi HR, Keesstra S. 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of the Total Environment. 615:438-451.
https://doi.org/10.1016/j.scitotenv.2017.09.262.
Torcivia CEG, López NNR. 2020. Preliminary Morphometric Analysis: Río Talacasto Basin, Central Precordillera of San Juan, Argentina. Advances in Geomorphology and Quaternary Studies in Argentina. Cham. pp. 158–168.