Emamifar S, Davari K, Ansari H, Ghahraman B, Hosseini SM, Naseri M. 2018. Evaluation of DWB model and its correction for estimation of water balance components in Annual - watershed scale (Case study: Neishaboor and Rokh watershed). Iran-Water Resources Reserch, 14(2):94-104. (In Persian).
Esmali A, Ahmadi H, Tahmoures M. 2014. Quantity assessment of water erosion intensity using regional model of erosion and sediment yield (Case study: Nir watershed, Ardebil). Journal of Range and Watershed Management, 67(3):407-417. (In Persian).
https://doi.org/10.22059/jrwm.2014.52830
Fang K, Shen Ch, Fisher JB, Niu J. 2016. Improving Budyko curve-based estimates of long-term water partitioning using hydrologic signatures from GRACE. Water Resources Research, 52(7):1-18.
https://doi.org/10.1002/2016WR018748
Fu, BP. 1981. On the calculation of the evaporation from land surface. Chin. Journal of the Atmospheric Sciences, 5(1):23–31.
Gerrits AMJ, Savenije HHG, Veling EJM, Pfister L. 2009. Analytical derivation of the Budyko curve based on rainfall characteristics and a simple evaporation model. Water Resources Research, 45(4):1-15.
https://doi.org/10.1029/2008WR007308
Greve P, Gudmundsson L, Orlowsky B, Seneviratne SI. 2016. A two-parameter Budyko function to represent conditions under which evapotranspiration exceeds precipitation. Hydrological Earth System Sciences, 20(6):2195–2205.
https://doi.org/10.5194/hess-20-2195-2016
Jones J, Creed IF, Hatcher K, Warren R, Adams M, Benson M, Boose M, Brown M, Campbe J, Williams MW. 2012. Ecosystem Processes and Human Influences Regulate Streamflow Response to Climate Change at Long-Term Ecological Research Sites. Biological Sciences, 62(4):390-404.
https://doi.org/10.1525/bio.2012.62.4.10
Liu J, Chen J, Xu J, Lin Y, Yuan Z, Zhou M. 2019. Attribution of RunoVariation in the Headwaters of the Yangtze River Based on the Budyko Hypothesis. International Journal of Environmental Research and Public Health, 16(14):2506.
https://doi.org/10.3390/ijerph16142506
Mianabadi A, Alizadeh A, Sanaeinejad SH, Ghahraman B, Davary K. 2016. Prediction of Annual Evaporation Change in Dry Regions Using the Budyko-type framework (Case Study of Neishaboor-RokhWatershed). Journal of Irrigation and Drainage, 10(3):398-411. (In Persian)
Mianabadi A, Gerrits MC, Shirazi P, Ghahraman B, Alizadeh A. 2019. 1 A global Budyko model to partition evaporation into interception and transpiration. Journal Hydrological Earth System Sciences, 23(12):4983–5000.
https://doi.org/10.5194/hess-23-4983-2019
Mostafazadeh R, Moradzadeh V, Alaei N, Hazbavi Z. 2022. Determining long-term memory using Hurst Index for precipitation and discharge time series of selected stations in Ardabil province. Water and Soil Resources Conservation, 11(2):113-131. (In Persian)
https://doi.org/10.30495/wsrcj.2021.19217
Mostafazadeh R, Nasiri Khiavi A, Ghabelnezam E. (2023). Temporal changes and flow pattern analysis using Colwell indices in mountainous rivers. Environment, Development and Sustainability. pp. 1-18.
https://doi.org/10.1007/s10668-023-03033-2
Ning T, Zhou Sh, Chang F, Shen H, Li Z, Liu W. 2019. Interaction of vegetation, climate and topography on evapotranspiration modelling at different time scales within the Budyko framework. Agricultural and Forest Meteorology, 275:59–68.
https://doi.org/10.1016/j.agrformet.2019.05.001
Sankarasubramanian A, Wang D, Archfield S, Reitz M, Vogel RM, Mazrooei A, Mukhopadhyay S. 2022. HESS Opinions: Beyond the long-term water balance: evolving Budyko's supply–demand framework for the Anthropocene towards a global synthesis of land-surface fluxes under natural and human-altered watersheds. Hydrology and Earth System Sciences, 24(4):1975-1984.
https://doi.org/10.5194/hess-24-1975-2020
Sheikh V, Naderi M, Sadoddin A, Asadi Nalivan O, Keramatzadeh A, Abedi Tourani M, Nazari A. Quantifying the contributions of climate change and human interventions on streamflow alteration in the Hableroud Rbasin using the hydrological sensitivity analysis approach based on the Budyko hypothesis. Water and Soil Management and Modeling, 3(4), 241-259. (In Persian).
https://doi.org/10.22098/mmws.2023.12114.1205
Talebi Khiavi H, Mostafazadeh R. 2021. Land use change dynamics assessment in the Khiavchai region, the hillside of Sabalan mountainous area. Arabian Journal of Geosciences, 14:1-15.
https://doi.org/10.1007/s12517-021-08690-z
Wang D, Tang Y. 2014. A one-parameter Budyko model for water balance captures emergent behavior in darwinian hydrologic models. Geophys. Res. Lett, 41(13):4569–4577.
https://doi.org/10.1002/2014GL060509
Zhang X, Dong Q, Costa V, Wang X. 2019. A hierarchical Bayesian model for decomposing the impacts of human activities and climate change on water resources in China. Science of the Total Environment, 665:836-847.
https://doi.org/10.1016/j.scitotenv.2019.02.189
Zheng H, Zhang L, Zhu R, Liu C, Sato Y, Fukushima Y. 2009. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resources Research, 45(7):1–9.
https://doi.org/10.1029/2007WR006665