Agutu NO, Awange JL, Zerihun A, Ndehedehe CE, Kuhn M, Fukuda Y. 2017. Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sensing of Environment. 194:287–302. https://doi.org/10.1016/j.rse.2017.03.041
Banerjee A, Chen R, Meadows ME, Singh RB, Mal S, Sengupta D. 2020. An analysis of long-term rainfall trends and variability in the uttarakhand himalaya using google earth engine. Remote Sensing. 12(4),709.
https://doi.org/10.3390/rs12040709
Belayneh A, Adamowski J, Khalil B, Ozga-Zielinski B. 2014. Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural networks and wavelet support vector regression models. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2013.10.052
Bhagat AD, Gorantiwar SD, Malunjkar VS. 2022. Assessment of Meteorological Drought using Standard Precipitation Index (SPI) in Western Maharashtra, India. Journal of Agricultural Science and Technology. 47(02): 152–156. https://doi.org/ 10.56228/JART. 2022.47205
Brown JF, Wardlow BD, Tadesse T, Hayes MJ, Reed BC. 2008. The vegetation drought response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GIScience and Remote Sensing. 45(1): 16–46.
https://doi.org/10.2747/1548-1603.45.1.16
Dutta D, Kundu A, Patel NR. 2013. Predicting agricultural drought in eastern Rajasthan of India using NDVI and standardized precipitation index. Geocarto International. https://doi.org/10.1080/10106049.2012.679975
Dutta D, Kundu A, Patel NR, Saha SK, Siddiqui AR. 2015. Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). Egyptian Journal of Remote Sensing and Space Science. 18(1): 53–63. https://doi.org/10.1016/j. ejrs. 2015.03.006.
ECMWF. 2018. Annual Report 2017. Reading: ECMWF ECMWF Annual Report. https://www.ecmwf. int/node/18309
Engdaw G, Legesse A, Mohammed Y, Likissa D. 2022. Analysis of meteorological drought using Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDIst) at Bilate Basin, Southern Ethiopia. [accessed 2024 Jun 15].
https://doi.org/10.21203/rs.3.rs-1664681/v1
Feller U. 2016. Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts. Journal Plant Physiology. Sep20; 203:84-94. https://doi.org/10.1016/j.jplph.2016.04.002
Guttman NB. 1998. Comparing the Palmer Drought INDEX and the Standardized Precipitaton INDEX1. Journal of the American Water Resources Association. 34(1): 113–121. https://doi:10.1111/j. 1752-1688.1998. tb05964. x
Huffman, GJ. Stocker EF, Bolvin DT, Nelkin EJ, Jackson T. 2019. GPM IMERG final precipitation L3 half hourly 0.1 degree × 0.1 degree V06, Greenbelt, MD, Goddard earth sciences data and information services center (GESDISC), https://doi.org/10.5067/GPM/IMERG/3B-HH/06
Jang S-M, Rhee J, Yoon S, Lee T, Park K. 2017. Evaluation of GPM IMERG Applicability Using SPI based Satellite Precipitation. J Korean Soc Agric Eng. 59(3): 29–39. https://doi.org/10.5389/KSAE. 2017.59.3.029.
Khan MA, Gadiwala MS. 2013. A Study of Drought over Sindh (Pakistan) Using Standardized Precipitation Index (SPI) 1951 to 2010. Pakistan Journal of Meteorology. 9(18): 15–22.
Khosravi H, Haydari E, Shekoohizadegan S, Zareie S. 2017. Assessment the Effect of Drought on Vegetation in Desert Area using Landsat Data. The Egyptian Journal of Remote Sensing and Space Science. 20; s3-s12. https://doi.org/10.1016/j. ejrs. 2016.11.007
Livada I, Assimakopoulos VD. 2007. Spatial and temporal analysis of drought in greece using the Standardized Precipitation Index (SPI). Theoretical and Applied Climatology. 89(3–4): 143–153. https://doi.org/10.1007/s00704-005-0227-z
Lu J, Jia L, Menenti M, Yan Y, Zheng C, Zhou J. 2018. Performance of the Standardized Precipitation Index Based on the TMPA and CMORPH Precipitation Products for Drought Monitoring in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 11(5): 1387–1396. https://doi.org/10.1109/JSTARS. 2018.2810163.
McKee TB, Doesken NJ,
Kleist J. 1995. Drought Monitoring with Multiple Times Scales. American Meteorological Society. 9
th Conference on Applied Climatology, 15-22 Janvier, Dallas. pp. 233-236.
McKee TB, Nolan J, Kleist J. 1993. The relationship of drought frequency and duration to time scales. Preprint of the Eighth Conference on Applied Climatology, American Meteorological Society.
Mishra AK, Singh VP. 2010. A review of drought concepts. Journal of Hydrology. 391(1): 202–216.
https://doi.org/10.1016/j. jhydrol. 2010.07.012.
Mohanta DR, Soren J, Sarangi SK, Sahu S. 2020. Meteorological drought trend analysis by standardized precipitation index (SPI) and reconnaissance drought index (RDI): A case study of Gajapati District. International Journal of Chemical Studies. 8(3):1741–1746. https://doi.org/10.22271/chemi. 2020. v8. i3x. 9448
Montandon L, Small E. 2008. The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI. Remote Sens Environmental Remote Sensing and Environment. 112 p.
https://doi.org/10.1016/j. rse. 2007.09.007
Montazeri M, Kiany M, Masoodian S. 2020. Evaluation of Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA v7) in drought monitoring over southwest Iran. Climatic Research. 82:55–73. https://doi.org/10.3354/cr01622
Naresh Kumar M, Murthy CS, Sesha Sai MVR, Roy PS. 2009. On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorol Appl. 16(3): 381–389 https://doi.org/10.1002/met. 136
Naumann G, Barbosa P, Carrao H, Singleton A, Vogt J. 2012. Monitoring drought conditions and their uncertainties in Africa using TRMM data. Journal of Applied Meteorology and Climatology.51(10). https://doi.org/10.1175/JAMC-D-12-0113.1
Obasi GOP. 1994. WMO’s role in the international decade for natural disaster reduction. Bulletin of the American Meteorological Society. 75(9): 1655–1662. https://doi.org/10.1175/1520-0477(1994)075<1655: WRITID>2.0. CO; 2.
Patel NR, Chopra P, Dadhwal VK. 2007. Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteorological Applications. 14(4):329–336. https://doi.org/10.1002/met. 33
Prakash S. 2019. Performance assessment of CHIRPS, MSWEP, SM2RAIN-CCI, and TMPA precipitation products across India. J Hydrol. https://doi.org/10.1016/j. jhydrol. 2019.01.036
Pramudya Y, Onishi T. 2018. Assessment of the Standardized Precipitation Index (SPI) in Tegal City, Central Java, Indonesia. IOP Conference Series: Earth and Environmental Science.129:012019 https://doi.org/10.1088/1755-315/129/1/012019
Saada N, Abu-Romman A. 2017. Multi-site Modeling and Simulation of the Standardized Precipitation Index (SPI) in Jordan. Journal of Hydrology: Regional Studies. 14:83–91. https://doi.org/10.1016/j. ejrh. 2017.11.002
Shahabfar A, Ghulam A, Eitzinger J. 2012. Drought monitoring in Iran using the perpendicular drought indices. Int J Appl Earth Obs Geoinformation. 18:119–127. https://doi.org/10.1016/j. jag. 2012.01.011.
Shirmohammadi-Aliakbarkhani Z, Akbari A. 2020. Ground validation of diurnal TRMM 3B42 V7 and GPM precipitation products over the northeast of Iran. Theoretical and Applied Climatology. 142:1413–1423. https://doi.org/10.1007/s00704-020-03392-0
Sorooshian S, Hsu K-L, Gao X, Gupta HV, Imam B, Braithwaite D. 2000. Evaluation of PERSIANN System Satellite–Based Estimates of Tropical Rainfall. Bulletin of the American Meteorological Society. 81(9):2035–2046. https://doi.org/10.1175/1520-0477(2000)081<2035: EOPSSE>2.3. CO; 2
Topçu E, Seckin N. 2016. Drought analysis of the Seyhan Basin by using standardized precipitation index (SPI) and L-moments. Journal of Agricultural Sciences, 22(2),196-215. https://doi.org/10.1501/Tarimbil_0000001381.
Tsesmelis DE, Vasilakou CG, Kalogeropoulos K, Stathopoulos N, Alexandris SG, Zervas E, Oikonomou PD, Karavitis CA. 2022. Drought assessment using the standardized precipitation index (SPI) in GIS environment in Greece. In: Computers in Earth and Environmental Sciences. Elsevier. pp. 619–633. [accessed 2024 Jun 15].
https://linkinghub.elsevier.com/retrieve/pii/B9780323898614000257
Wang Y, Ma J, Xiao X, Wang X, Dai S, Zhao B. 2019. Long-term dynamic of Poyang Lake surface water: A mapping work based on the Google Earth Engine cloud platform. Remote Sensing. https://doi.org/10.3390/rs11030313
Wei J,
Jiang M, Ren J,
Yuan J, Zhang. 2019. Performance of two long-term Satellite-Based and GPCC 8.0 precipitation products for drought monitoring over the Yellow River Basin in China. Sustainability. 11(18): 4969. https://doi.org/10.3390/su11184969
Wei L, Jiang S, Ren L, Zhang L, Wang M, Duan Z. 2020. Preliminary utility of the retrospective IMERG precipitation product for large-scale drought monitoring over Mainland China. Remote Sensing. https://doi.org/10.3390/RS12182993
Wilhite DA, Glantz MH. 1987. Understanding the drought phenomenon. The role of definitions. Understanding the drought phenomenon: The role of definitions. Water international. 10(3): 111-120.
World Meteorological Organization. 2012. Standardized Precipitation Index user guide (M. Svoboda, M. Hayes and D. Wood). Geneva: (WMO-No. 1090).
Wu H, Svoboda MD, Hayes MJ, Wilhite DA, Wen F. 2007. Appropriate application of the standardized precipitation index in arid locations and dry seasons. International Journal of Climatology. 27(1): 65–79.
https://doi.org/10.1002/joc. 1371.
Zhang A, Jia G. 2013. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sensing of Environment. 134:12–23. https://doi.org/10.1016/j.rse.2013.02.023