Abbasi M, najafi nejad A, berdi sheikh V, azim mohseni M. 2017. Investigating land use and slope effects on soil properties, runoff and sediment using rainfall simulator case study of kechik Watershed in Golestan Province. Environmental Erosion Research. 6: 104-24. (In persian).
Afshar FA, Ayoubi S, Jalalian A. 2010. Soil redistribution rate and its relationship with soil organic carbon and total nitrogen using 137Cs technique in a cultivated complex hillslope in western Iran. Journal of Environmental Radioactivity.101(8):606-614.
https://doi.org/10.1016/j.jenvrad.2010.03.008
Arata L, Meusburger K, Frenkel E, A’Campo-Neuen A, Iurian AR, Ketterer ME, Mabit L, Alewell C. 2016. Modelling deposition and erosion rates with radionuclides (MODERN) e Part 1: A new ronversion model to derive soil redistribution rates from inventories of fallout radionuclides. Journal of Environmental Radioactivity.162-163:45-55.
https://doi.org/10.1016/j.jenvrad.2016.05.008
Bayat R, Moradi S. 2014. Review of research conducted on the sediment delivery ratio. Extension and Development of Watershed Management. 2(5): 27-36. (In persian).
Cammeraat LH. 2002. A review of two strongly contrasting geomorphological systems within the context of scale. Earth Surface Processes and Landforms. 27(11): 1201-1222.
https://doi.org/10.1002/esp.421
Cerdan O, Govers G, Le Bissonnais Y, Van Oost K, Poesen J, Saby N, Dostal T. 2010. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology. 122(1-2): 167-177.
https://doi.org/10.1016/j.geomorph.2010.06.011
Cerdan O, Le Bissonnais Y, Govers G, Lecomte V, Van Oost K, Couturier A, Dubreuil N. 2004. Scale effect on runoff from experimental plots to catchments in agricultural areas in Normandy. Journal of Hydrology. 299(1-2):4-14.
https://doi.org/10.1016/j.jhydrol.2004.02.017
Chiu YJ, Chang KT, Chen YC, Chao JH, Lee HY. 2011. Estimation of soil erosion rates in a subtropical mountain watershed using 137Cs radionuclide. Natural Hazards. 59(1): 271-284.
https://doi.org/10.1007/s11069-011-9749-0
Conforti M, Aucelli PP, Robustelli G, Scarciglia F. 2011. Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Natural Hazards. 56(3): 881-898.
https://doi.org/10.1007/s11069-010-9598-2
Evrard O, Laceby PJ, Huon S, Lefevre I, Sengtaheuanghoung O, Ribolz O. 2016.Combinig multiple fallout radionuclides (137Cs., 7Be., 210Pbex) to investigate temporal sediment source dynamics in tropical ephemeral river systems. Journal of Soils Sediments. 16: 1130-1144.
https://doi.org/10.1007/s11368-015-1316-y
farhoodi M, mirzaei H, kavyan A, safari A. 2015. Comparison and evaluation of different methods to estimate sediment delivery ratio in three different climates of Iran. Geography and Environmental Planning. 26(3): 255-274. (In Persian).
Glenn NF, Streutker DR, Chadwick DJ, Thackray GD, Dorsch SJ. 2006. Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology. 73: 131-148.
https://doi.org/10.1016/j.geomorph.2005.07.006
Govers G, Van Oost K, Poesen J. 2006. Responses of a semi-arid landscape to human
disturbance: A simulation study of the interaction between rock fragment cover, soil erosion and land use change. Geoderma. 133: 19–31.
https://doi.org/10.1016/j.geoderma.2006.03.034
Heckrath G, Djurhuus J, Quine TA, Van Oost K, Govers G, Zhang Y. 2005. Tillage erosion and its effect on soil properties and crop yield in Denmark. Journal of Environmental Quality. 34(1):312-324.
https://doi.org/10.2134/jeq2005.0312a
Jiang P, Thelen KD. 2004. Effect of soil and topographic properties on crop yield in a north-central corn–soybean cropping system. Agronomy Journal. 96(1):252-258.
https://doi.org/10.2134/agronj2004.0252
Khaledi Darvishan A, Sadeghi SHR, Homaee M, Arabkhedri M. 2021. Sediment Budgeting in Laboratory Plots under Rainfall Simulation
. Watershed Management Research. 34(2): 15-31. (In Persian).
https://doi:10.22092/wmej.2020.123819.1164
Kikuchi T, Kohzu A, Ouchi T, Fukushima T. 2020. Quantifying the sources and removal of nitrate in riparian and lotic environments based on land use and topographic metrics of the watershed. Ecological Indicators. 116: 106535.
https://doi.org/10.1016/j.ecolind.2020.106535
Li M, Shi, X Shen Z, Yang E, Bao H, Ni Y. 2019. Effect of hillslope aspect on landform characteristics and erosion rates. Environmental Monitoring and Assessment. 191: 1-10.
https://doi.org/10.1007/s10661-019-7760-1
Maetens W, Vanmaercke M, Poesen J, Jankauskas B, Jankauskiene G, Ionita. I. 2012. Effects of land use on annual runoff and soil loss in Europe and the Mediterranean: A meta-analysis of plot data. Progress in Physical Geography.36(5):599-653.
https://doi.org/10.1177/0309133312451303
Masroor M, Sajjad H, Rehman S, Singh R, Rahaman MH, Sahana M, Avtar R. 2021. Analysing the relationship between drought and soil erosion using vegetation health index and RUSLE models in Godavari Middle Sub-basin, India. Geoscience Frontiers. 13(2): 101312.
https://doi.org/10.1016/j.gsf.2021.101312
Meshkat M, Amanian N, Talebi A, Kiani-Harchegani M, Rodrigo-Comino J. 2019. Effects of roughness coefficients and complex hillslope morphology on runoff variables under laboratory conditions. Water. 11(12): 2550.
https://doi.org/10.3390/w11122550
Mombini A, Amanian N, Talebi A, Kiani-Harchegani M, Rodrigo-Comino J. 2021. Surface roughness effects on soil loss rate in complex hillslopes under laboratory conditions. Catena. 206: 105503.
https://doi.org/10.1016/j.catena.2021.105503
Nosrati K, Govers G, Ahmadi H, Sharifi F, Amoozegar M, Merckx R, Vanmaercke M. 2011. An exploratory study on the use of enzyme activities as sediment tracers: biochemical fingerprints? International Journal of Sediment Research. 26: 136-151.
https://doi.org/10.1016/S1001-6279(11)60082-6
Park YS, Kim J, Kim NW, Kim SJ, Jeon JH, Engel BA, Lim KJ. 2010. Development of new R, C and SDR modules for the SATEEC GIS system. Computers and Geosciences. 36(6): 726-734.
https://doi.org/10.1016/j.cageo.2009.11.005
Porto P, Callegari G. 2022. Comparing long‐term observations of sediment yield with estimates of soil erosion rate based on recent 137Cs metrics. Results from an experimental catchment in Southern Italy. Hydrological Processes. 36(9): e14663.
https://doi.org/10.1002/hyp.14663
Rajaei H, khodashenas S, Esmaili K. 2017. Laboratory Analysis of Energy Losses in Gabion Steeped Spillways with and without Sedimentation at Upstream. Iranian Journal of Irrigation and Drainage.11(5):900-910. (In Persian).
Ritchie JC, Ritchie CA, 2007. Bibliography of publications of 137-cesium studies related to erosion and sediment deposition. Available from: https://www.ars.usda.gov/Main/docs.htm?docid¼15237
Rodrigo Comino J, Iserloh T, Lassu T, Cerdà A, Keestra SD, Prosdocimi M, Brings C, Marzen M, Ramos MC, Senciales JM, Sinoga JR. 2016. Quantitative comparison of initial soil erosion processes and runoff generation in spanish and german vineyards. Science of the Total Environment.565:1165-1174.
https://doi.org/10.1016/j.scitotenv.2016.05.163
Sadeghi SHR, Raeisi MB, Hazbavi Z. 2018. Influence of freeze-only and freezing-thawing cycles on splash erosion. International Soil and Water Conservation Research. 6(4): 275-279.
https://doi.org/10.1016/j.iswcr.2018.07.004
Samadzadeh R, Pourmohammad S. 2018. Modeling soil erosion and sediment production using morgan-morgan finney (mmf) method in the Gazaz-Chay Khalkhal Watershed. Quantitative Geomorphological Research. 4(2): 75-89.
Sedighi F, Khaledi Darvishan A, Golosov V, Zare MR, Spalevic V. 2022. Influence of land use on changes of sediment budget components: western Iran case study. Turkish Journal of Agriculture and Forestry. 46(6): 838-851.
https://doi.org/10.55730/1300-011X.3046
Sedighi F, Khaledi Darvishan A, Zare MR. 2020. Assessment of the Slop Gradient on the Estimated Erosion and Sediment Delivery Ratio by Using 137Cs in the Khamsan Representative Watershed.
Watershed Management Research. 33(3): 2-19. (In Persian).
https://doi:10.22092/wmej.2019.127505.1252
Sharib J, Tugi DFA, Ishak MT, Anthonius C, Adziz MIA, Jaffary NAM. 2023. A study of soil erosion and sedimentation between two different seasons in sembrong catchment using cesium-137. Jurnal Sains Nuklear Malaysia. 35(2): 58-68.
Sherestha M.k. 2010. Soil erosion modeling using remote sensing and GIS, Case of study of Jhikhu Khola Watershed, Nepal. Journal of Nepal Geologyical Society. 41: 7-15.
Tahoori P, Parvin MR. 2016. conservation and sustainable use of soil and its stand in international environmental law. Journal of Environmental Science and Technology. 18(2): 145-161.
https://sid.ir/paper/356203/en
Van den Putte A, Govers G, Diels J, Gillijns K, Demuzere M. 2010. Assessing the effect of soil tillage on crop growth: A meta-regression analysis on european crop yields under conservation agriculture. Europian Journal of Agronomy. 33: 231–241.
Velasco H, Astorga RT, Joseph D, Antoine JS, Mabit L, Toloza A, Walling DE. 2018. Adapting the Caesium-137 technique to document soil redistribution rates associated with traditional cultivation practices in Haiti. Journal of Environmental Radioactivity. 183: 7-16.
https://doi.org/10.1016/j.jenvrad.2017.12.008
Venteris ER, McCarty GW, Ritchie JC, Gish T. 2004. Influence of management history and landscape variables on soil organic carbon and soil redistribution. Soil Science. 169(11): 787-795.
https://doi.10.1097/01.ss.0000148742.75369.55 Walling DE, He Q, Whelan PA. 2003. Using Cs-137 metrics to validate the application of the AGNPS and ANSWERS erosion and sediment yield models in two small devon catchments. Soil and Tillage Research. 69:27-43.
https://doi.org/10.1016/S0167-1987(02)00126-5
Walling DE, He Q, Zhang Y. 2014. Conversion models and related software. In: Guidelines for Using Fallout Radionuclides to Assess Erosion and Effectiveness of Soil Conservation Strategies. Iaea-Tecdoc-1741: 125-148.
Walling DE, Zhang Y, He Q. 2007. Models for converting metrics of environmental radionuclide inventories (137Cs, Excess 210Pb, and 7Be) to estimates of soil erosion and deposition rates (Including Software for Model Implementation), Department of Geography, University of Exeter, UK. 87 p.
Wang H, Zhang GH, Li NN, Zhang BJ, Yang HY. 2019. Soil erodibility as impacted by vegetation restoration strategies on the Loess Plateau of China. Earth Surface Processes and Landforms.44(3):796-807.
https://doi.org/10.1002/esp.4531
Xie Y, Yuan F, Zhan T, Kang C, Chi Y. 2018. Geochemical and isotopic characteristics of sediments for the Hulun Buir Sandy Land, northeast China: implication for weathering, recycling and dust provenance. Catena. 160: 170-184.
https://doi.org/10.1016/j.catena.2017.09.008
Young CJ, Liu S, Schumacher JA, Schumacher TE, Kaspar TC, McCarty GW, Jaynes DB. 2014. Evaluation of a model framework to estimate soil and soil organic carbon redistribution by water and tillage using 137Cs in two US Midwest agricultural fields. Geoderma. 232: 437-448.
https://doi.org/10.1016/j.geoderma.2014.05.019
Zapata F. (Ed.). 2002. Handbook for the assessment of soil erosion and sedimentation using environment radionuclides. Kluwer Academic Publishers. The Netherlands.
https://doi.org/10.1007/0-306-48054-9
Zarei R, Khaledi Darvishan A. 2020. The role of surface sealing caused by subsequent rainfall in the runoff components at the Kojour Watershed Mazandaran.
Watershed Management Research.
33(4): 77-93. (In Persian).
https://doi.10.22092/wmej.2020.123725.1161
Zhao J, Wang, Z, Dong Y, Yang Z, Govers G. 2022. How soil erosion and runoff are related to land use, topography and annual precipitation: Insights from a meta-analysis of erosion plots in China. Science of the Total Environment. 802: 149665.
https://doi.org/10.1016/j.scitotenv.2021.149665