Esadafal R, Girard MC, Courault D. 1989. Munsell soil color and soil reflectance in the visible spectral bands of landsat MSS and TM data. Remote Sensing of Environment. 27 (1): 37-46. 
https://doi.org/10.1016/0034-4257(89)90035-7
Franklin J, McCullough P, Gray C. 2000. Terrain variables used for predictive mapping of vegetation communities in Southern California. In Wilson J, Gallant J (Eds) Terrain Analysis: Principles and Applications. Wiley. New York. Chichester. Toronto and Brisbane. pp. 331-353. 
https://www.researchgate.net/publication/43289817
Jafari A, Sefidi H, Rahime M. 2023. Investigating the relationship between spatial changes of soil carbon deposition with climatic elements of temperature and precipitation in recent years (Ahangaran Basin study area). Journal of Climate Change Research. 3 (12):1-20. (InPersian). https://doi.org/
10.30488/ccr.2022.365475.1100
Jafariyan Z, Tayefeh L, Alikhani S and Tamartash R. 2012. Investigation of carbon storage potential of 
Artemisia aucheri, Agropyron elongatum, Stipa barbata, in Semi-arid Rangelands of Iran (Case study: Peshert Region Kiasar). Journal of Range and Watershed Management. 65(2):191-202. (In Persian). 
https://doi.org/10.22059/jrwm.2012.30011
Kamali N, Sadeghipour A. 2016. Determining the most important factors related to carbon storage in different land uses (Case study: Shahriar, Iran). Watershed Management Research (Pajouhesh & Sazandegi). 111: 2-8. (In Persian). https://doi.org/
10.22092/wmej.2016.112319
Khalifehzadeh R, Tamartash RM, Tatian R, Sarajian Maralan MR. 2018. An estimation of topsoil organic carbon by combining factor analysis and multiple regression in semi-steppe rangelands of Lazour, Firouzkooh. Iranian Journal of Range and Desert Research. 25 (3): 699-712. (In Persian). 
https://doi.org/10.22092/ijrdr.2018.117819
Mondal A, Khare D, Kundu S, Mondal S, Mukherjee S, Mukhopadhyay A. 2017. Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. The Egyptian Journal of Remote Sensing and Space Sciences. 20(1): 61-70. 
https://doi.org/10.1016/j.ejrs.2016.06.004
Nateghi S, Khalifehzadeh R, Souri M, Khodagholi M. 2021. Spatial prediction of soil surface organic carbon using spectral and non-spectral factors (Case study; Asuran Summer Rangeland, Semnan Province). Journal
 of Range and Watershed Management. 4 (1): 177-188.
 (In Persian). 
https://doi.org/10.22059/jrwm.2021.313256.1547
Rousta MJ, Pakparvar M, Soleimanpour SM, Enayati M. 2022. The role of land use and physical properties on soil organic carbon in the flood spreading fields of Kowsar Station. Watershed Management Research. 34-4(133): 35-149. (In Persian). https://doi.org/10.22092/WMRJ.2021.355443.1426
                                                                                                                Saha D, Kukal S, Sharma S. 2011. Landuse impacts on SOC fractions and aggregate stability in typic us ochrepts of Northwest India. Plant Soil. 339: 457– 470. https://doi.org/10.1007/s11104-010-0602-0
                                                                                                                                                                                                                                                                                                                                                Tamartash R,
 Tatian MR, Yousefian M. 2012. The ability of different vegetative forms to carbon sequestration in plain rangeland of Miankaleh. Journal of Environmental Studies. 38 (62):45-54. (In Persian). https://doi.org/ 
10.22059/jes.2012.29099
Torkamani F, Piri Sahragard H, PahlavanRad MR, Nohtani M. 2020. Determination of soil organic carbon distribution along with affecting factors using random forest model in Ravang Minab watershed. Agricultural Engineering. 42(4): 89-104. (In Persian). https://doi.org/10.22055/agen.2020.29872
                                                                                                                Wang Q, Shan Y, Shi W, Zhao F, Li Q, Sun P Wua Y. 2024. Assessing spatiotemporal variations of soil organic carbon and its vulnerability to climate change: A bottom-up machine learning approach. Climate Smart Agriculture. 1 (100025): 1-9. 
https://doi.org/10.1016/j.csag.2024.100025
Wang Y, Fu B, Lü Y, Song C, Luan Y. 2010. Local-scale spatial variability of soil organic carbon and its stock in the hilly area of the Loess Plateau, China. Quaternary Research. 73(1):70-76. 
https://doi.org/10.1016/j.yqres.2008.11.006
Xiaoguang N, Shaoliang Z, Chengbo Z, Pengke Y, Hao W, Weitao X, Mingke S, Muhammad A. 2024. Key factors influencing the spatial distribution of soil organic carbon and its fractions in Mollisols. 
Catena. 247: (10) 108522. 
https://doi.org/10.1016/j.catena.2024.108522
Zhang P, Wang Y, Sun H, Qi L, Liu H, Wang Z. 2021. Spatial variation and distribution of soil organic carbon in an urban ecosystem from high-density sampling. Catena. 204 (9): 105364. 
https://doi.org/10.1016/j.catena.2021.105364