Asadi Zarch M, Sivakumar B, Sharma A. 2015. Droughts in a warming climate: A global assessment of standardized precipitation index (SPI) and reconnaissance drought index (RDI). Journal of Hydrology. 526: 183-195.
Ballarin A, Barros G, Cabrera M, Wendland E. 2021. A copula-based drought assessment framework considering global simulation models. Journal of Hydrology: Regional Studies. 38p.
https://doi.org/10.1016/j.ejrh.2021.100970
Bazrafshan O, Zamani H, Shekari M, Singh VP. 2020. Regional risk analysis and derivation of copula-based drought for severity-duration curve in arid and semis-arid regions. Theoretical and Applied Climatology. 141: 889-905.
Doodman N, Amini M, Jabbariand H, Dolati A. 2021. FGM generated archimedean copulas with concave multiplicative generators. Iranian Journal of Fuzzy Systems, 18(2): 15-29.
Ganguli P. 2014. Probabilistic analysis of extreme droughts in Southern Maharashtra using bivariate copulas. ISH Journal of Hydraulic Engineering, 20(1): 90-101.
Genest C, Favre AC. 2007. Everything you always wanted to know about copula modelling but were afraid to ask. Journal of Hydrologic Engineering, 12 (4): 347–368.
IPCC. 2013. In: Stocker TF et al (eds) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment Report of the IPCC. Cambridge University press. Cambridge:
https://doi.org/10.1017/CBO9781107415324.
IPCC. 2014. In: Pachauri RK et al (eds) Climate change 2014: synthesis Report. Contribution of working groups I, II and III to the fifth assessment Report of the IPCC. Geneva. 151 pp.
Jahannamaii N, khosravinia P, Sanikhani H, Mirabbasi R. 2020. Bivariate Analysis of Duration and Severity of Drought in Sanandaj and Saqez Stations. Journal of Irrigation and Water Engineering, 11 (2): 131-146. (In Persian).
Jaser M, Min A. 2021. On tests for symmetry and radial symmetry of bivariate copulas towards testing for ellipticity. Computational Statistics. 36:1845–1870 https://doi.org/10.1007/s00180-020-00994-0.
Khalili D, Farnoud T, Jamshidi H, Kamgar-Haghighi AA, Zand-Parsa S .2011. Comparability analyses of the SPI and RDI meteorological drought indices in different climatic zones. Water Resourse Management, 25(6):1737–1757.
Li W. 1990. Mutual information functions versus correlation functions. Journal of Statistical Physics. 60: 823–837.
Li Z, Shao Q, Tian Q, Zhang L. 2020. Copula-based drought severity-area-frequency curve and its uncertainty, a case study of Heihe River basin, China. Hydrology Research, 51 (5): 867–881
https://doi.org/10.2166/nh.2020.173.
Ma J, Sun Z. 2011. Mutual Information Is Copula Entropy. Tsinghua science and technology, 16(1): 51-54.
Maleki A, Torkamani MJ. 2015. Drought Management for Optimazation of Water Resources. Agricultural Economics Research, 7(1): 65-89. (In Persian).
Mirabbasi R, Fakheri-Fard A, Dinpashoh Y.2012. Bivariate drought frequency analysis using the copula method. Theoretical and Applied Climatology, 108 (1–2):191–206.
Mishra AK, Singh VP. 2010. Changes in extreme precipitation in Texas. Journal of Geophysics Research Atmosphere. 115(D14):: https:// doi. Org/10. 1029/ 2009J D013398.
Mousavi Nadoushani S, Alimohammadi S, Ahani A, Behrouz M, Mousavi SM. 2018. Bivariate drought frequency analysis in Gharesoo-Gorganrud basin by using copulas. Journal of Water and Soil Conservation, 25(4): 71-91. (In Persian).
Nelsen RB. 2007. An introduction to copulas, 2nd ed.; Springer. Science Business Media: New York, NY, USA. 272 p.
Olyaei M, Zeynolabedin A, Ghiasi B, karbassi A. 2019. Developing combined regional drought index and presenting return period curves using copula function. Modares Civil Engineering Journal. 19 (5):167-179. (In Persian).
Otkur A, Wu D, Zheng Y, Kim JS, Lee JH. 2021. Copula-based drought monitoring and assessment according to zonal and meridional temperature gradients.
Atmosphere. 12(8):
https://doi.org/10.3390/atmos12081066
Sadegh M, Ragno E, Aghakouchak A. 2017. Multivariate copula analysis toolbox (MvCAT): describing dependence and underlying uncertainty using a Bayesian framework. Water Resources Research. 53: 5166–5183.
Saghafian B, Mehdikhani H. 2014. Drought characterization using a new copula-based trivariate approach. Natural hazards. 72(3): 1391-1407.
Salvadori G, De Michele C. 2010. Multivariate multi parameter extreme value models and return periods: a copula approach. Water resources research. 46(10):
https://doi.org/10.1029/2009WR009040.
Serinaldi F, Bonaccorso B, Cancelliere A, Grimaldi S. 2009. Probabilistic characterization of drought properties through copulas. Physics and Chemistry of the Earth. Parts A/B/C 34( 10–12): 596-605.
Shiau JT,
Modarres R. 2009. Copula-based drought severity-duration-frequency analysis in Iran. Meteorological applications. 16: 481 – 489.
Shokoohi A. 2012. Comparison of SPI and RDI in drought analysis in local scale with emphasizing on agricultural drought (Case study: Qazvin and Takestan). Iranian Journal of Irrigation and Drainage. 3(1): 111-122. (In Persian).
Shokoohi A, Morovati R. 2015. Basinwide comparison of RDI and SPI within an IWRM Framework. Water Resources Management. 29: 1-18.
Sklar M. 1959. Fonctions de Repartition an dimensions ET Leurs Marges, Publications de l’Institut Statistique de l’Université de Paris. 8: 229-231.
Tigkas D, Vangelis H, Tsakiris G. 2019. Drought characterisation based on an agriculture-oriented standardised precipitation index. Theoretical and Applied Climatology. 135:1435–1447.
Tigkas D, Vangelis H, Tsakiris G. 2015. DrinC: a software for drought analysis based on drought indices. Earth Science Informatics. 8(3): 697-709.
Tosunoglu F, Kisi O. 2016. Joint modelling of annual maximum drought severity and duration. Journal of Hydrology. 543: 406-422.
Tsakiris G, Nalbantis I, Pangalou D, Tigkas D, Vangelis H. 2008. Drought meteorological monitoring network design for the Reconnaissance Drought Index (RDI). 1st international conference. Drought management: scientific and technological innovations .Zaragoza, Spain.
Ullah H, Akbar M. 2021. Bivariate homogenous regions and projections based on copula function using RDI and SPI indices for drought risk assessment in Pakistan. Arab J Geoscience 14. :
https://doi.org/10.1007/s12517-021-08645-4
Vicente-Serrano SM, Begueria S, Lopez-Moreno JI .2010. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climatology. 23(7):1696–1718.
Yang J, Chang J, Wang, Y, Li Y, Hu H, Chen Y, Huang Q, Yao J. 2018. Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index. Journal of Hydrology. 557: 651-667.
Yue S, Ouarda, TB, Bobée B, Legendre P, Bruneau P. 1999. The Gumbel mixed model for flood frequency analysis. Journal of Hydrology. 226(1–2): 88–100.
Zhang L, Singh VP. 2007. Bivariate rainfall frequency distributions using Archimedean copulas. Journal of Hydrology. 332(1–2): 93-109.
Zhao P, Lü H, Fu G, Zhu Y, Su J, Wang J. 2017. Uncertainty of hydrological drought characteristics with copula functions and probability distributions: a case study of Weihe River, China. Water, 9 (5):
https://doi.org/10.3390/w9050334.