Ahmadi F, Radmanesh F, Mirabbasi Najaf Abadi R. 2015. Comparison between genetic programming and support vector machine methods for daily river flow forecasting (Case study: Barandoozchay River). Journal of Water and Soil. 28(6): 1162–1171. (In Persian).
Bashari M, Vafakhah M. 2011. Comparison of different time series analysis methods for forecasting monthly discharge in the Karkheh Watershed, Journal of Irrigation and Water Engineering. 1(2): 75–86. (In Persian).
Box GE P, Cox DR. 1964. An analysis of transformations, Journal of the Royal Statistical Society. Series B. 26: 211–252.
Chathield K. 2010. An Introduction to the analysis of time series, translated by Hossein Ali Nirmandan and Seyed Abolghasem Gavinia, Mashhad Ferdowsi University Press. 290 pp. (In Persian).
Cramer S, Kampouridis M, Freitas A. 2018. Decomposition genetic programming: An extensive evaluation on rainfall prediction in the context of weather derivatives, Applied Soft Computing Journal. 70: 208–224.
Danandeh Mehr A, Kahya E, Olyaie E. 2013. Streamflow prediction using linear genetic programming in comparisonwith a neuro-wavelet technique, Journal of Hydrology. 505: 240–249.
Danandeh Mehr A, Kahya E, Yerdelen C. 2014. Linear geneticprogrammingapplicationforsuccessive-station monthlystreamflowprediction, Journal of Computers and Geosciences.70(2014):63–72.
Darbandi S. Dinpajouh Y. Zeinali S. 2014. Efficiency study of the system dynamics model to simulate the rainfall–runoff (Case Study: Lighvan Watershed), Journal of Water and Soil, 28(1):127-138 (In Persian).
Dorado J, Rabunal JR, Pazos A, Rivero D, Santos A, Puertas J. 2003. Prediction and modeling of therainfall-runoff transformation of a typical urban basin using ANN and GP, Appl. Artificial Intelligent. 17: 329–343 pp.
Farboudfam N. Ghorbani M.A. Alami M.T. 2009. River flow prediction using Genetic programming (Case Study: Lighvan River Watershed), Journal of Soil and Water Science. 19(1): 107–122. (In Persian).
Ghorbani MA, Khatibi R, Aytek A, Makarynskyy O, Shiri J. 2010. Sea water level forecasting using genetic programming and artificial neural networks. Computers and Geoscience. 36(5): 620–627.
Golnarkar S, Poureza-Bilondi M, Khashei A, Amirabadizadeh M. 2017. Assessment of basin hydrological components by modified conceptual continuous rainfall-ran off SCS-CN, 2017. Journal of Water and Soil Conservation. 24(1): 1–23. (In Persian).
Hosseini SM, Mahjouri N. 2016. Integrating support vector regression and a geomorphologic artificial neural network for daily rainfall-runoff modeling, Applied Soft Computing. 38: 329–345.
Huo Z, Feng S, Kang S, Huang G, Wang F, Guo P. 2012. Integrated neural networks for Monthly River flow estimation in arid inland basin of Northwest China, Journal of Hydrology. 420–421: 159–170.
Jayawardena AW, Muttil N, Fernando TMKG. 2005. Rainfall-runoff modelling using geneticprogramming, International Congress on Modelling and Simulation Society ofAustralia and New Zealand December 2005, New Zealand. 1841–1847 pp.
Karamouz M, Araghinejad Sh. 2005. Advanced Hydrology, Amir Kabir press. 480pp. (In Persian).
Khu ST, Liong SY, Babovic V, Madsen H, Muttil N. 2001. Genetic programming and its application in real- time runoff forming. Journal of American Water Resource Associate. 37(2): 439–451.
Mahdavi M. 2002.Applied hydrology, Tehran University Press. 364 p. (In Persian).
Masoodi A, Parsamehr P, Salmasi F, Pureskandar S. 2012. Regression analysis, genetic programming and ANN to predict discharge coefficient of compound broad crested weir, Journal of Water and Soil. 26(4): 933–942. (In Persian).
Massoudian SA. 2003. Investigating the geographical distribution of rainfall in Iran, using periodic factor analysis, Journal of Geography and Development. 1: 79–88. (In Persian).
Mendez MC, Wenceslao G, Manuel PF, Manuel JLP, Roman L. 2004. Modelling of the monthly and daily behaviour of the runoff of the Xallas river using Box-Jenkins and neural networks methods, Journal of Hydrology. 296: 38–58.
Moatamednia MA, Nohegar A, Malekian Saberi M, Karimi Zrchi K. 2017. Runoff prediction using intelligent models, Ecohydrology. 4(4): 968–955. (In Persian).
Rahimikhoob A, Mahmoodi A. 2012. Estimating actual evapotranspiration in a catchment using artificial neural networks with minimum climatic data (Case study: Emame Representative Catchment, Iran-Water Resources Research. 7 (4): 51–61. (In Persian).
Salajegheh A, Fathabadi A, Mahdavi M. 2009. Investigation on the efficiency of neuro-fuzzy method and statistical models in simulation of rainfall-runoff process, Journal of Range and Watershed Management, 1(62): 65–97.
Sarangi A, Bhattacharya AK. 2005. Comparison of artificial neural network and regression models for sediment loss prediction from Banha watershed in India, Agricultural water management. 28(4): 373–385.
Sharifi AR, Dinpashoh Y, Fakheri-Fard A, Moghaddamnia AR. 2013. Optimal combination of variables for runoff simulation in the Amameh Wtershed using gamma test, Water and Soil Science. 23(4): 59–72. (In Persian).
Solaimani K. 2009. Rainfall-runoff prediction based on artificial neural network (A Case Study: Jarahi Watershed), American-Eurasian Journal of Agriculture and Environment. Science. 5 (6): 856–865.
Soltani A, Ghorbani MA, Fakherifard A, Darbandi S, Farsadizadeh D. 2010. Genetic programming and its application in modeling the rainfall-runoff process, Journal of Soil and Water. 1(4): 61–71. (In Persian).
Tarazkar MH, Sedghamiz A. 2008. Monthly discharge forecasting for Karkheh River by using time series and artificial Intelligent traits, Pajouhesh and Sazandegi. 80: 51–58. (In Persian).
Valipour M, Banihabib ME, Behbahani SMR. 2013. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez Dam Reservoir, Physical Geography Research. 476: 433–441.
Varoonchotikul P. 2003. Flood forecasting using artificial neural networks, vrije universiteit unesco-ihe Institute for Water Education. 116 pp.
Wang W, Men Ch, Lu W. 2009. Online prediction model based on support vector machine, Neuro computing. 71: 550–558.
Wu CL, Chau KW, Li YS. 2009. Methods to improve neural network performance in daily flows prediction, Journal of Hydrology. 72 (1–4): 80–93.
Yosefi M, Talebi A, Poorshareiati R. 2014. Application of artificial intelligence in water and soil science, Yazd University Press. 534 p. (In Persian).
Zahiri AR, Dehghani AA, Hezarjeribi A. 2012. Determination of stage discharge curve for laboratory and river compound channels applying genetic algorithm. Journal of Water and Soil Conservation. 19(2):179–192. (In Persian).
Zahiri A, Azamathulla MD. 2014. Comparison between linear genetic programming and M5 tree models to predict flow discharge in compound channels. Neural Computing and Application. 4:413–420.