Brosinsky A, Foerster S, Segl K, Kaufmann H. 2014. Spectral fingerprinting:sediment source discrimination and contribution modelling of artificial mixtures based on VNIR-SWIR spectral properties. J. Soil Sediments 14: 1949–1964.
Collins AL, Pulley S, Foster IDL, Gellis A, Porto P, Horowitz AJ. 2017. Sediment source fingerprinting as an aid to catchment management: A review of the current state of knowledge and a methodological decision-tree for end-users. Journal of Environment Management, 194: 86–108. https://doi.org/10.1016/j.jenvman. 2016.09.075
Collins AL, Walling DE, Leeks GJL. 1997. Fingerprinting the origin of fluvial suspended sediment in larger river basins: combining assessment of spatial provenance and source type. Geografiska Annaler. 79: 239–254.
Collins AL, Walling DE. 2004. Documenting catchment suspended sedimentsources: problems, approaches and prospects. Prog. Phys. Geogr. 28: 159–196.
CollinsAL, Walling DE. 2007. The storage and provenance of fine sediment on thechannel bed of two contrasting lowland permeable catchments, UK. River Res.Appl. 23: 429–450.
Collins AL, Walling DE, Sichingabula HM, Leeks GJL. 2001. Using 137Cs measurements to quantify soil erosion and redistribution rates for areas under different land use in the Upper Kaleya River basin, southern Zambia. Geoderma. 104: 299–323.
Collins AL, Zhang Y, Walling DE, Grenfell SE, Smith P, Grischeff J, Brogden D. 2012. Quantifying fine-grained sediment sources in the River Axe Catchment, southwest England: Application of a Monte-Carlo numerical modelling framework incorporating local and genetic algorithm optimisation. Hydrological Processes. 26 (13): 1962–1983. doi:10.1002/hyp.8283.
Collins AL, Zhang YS, Duethmann D, Walling DE, Black KS. 2013. Using a novel tracing-tracking framework to source fine-grained sediment loss to watercourses at sub-catchment scale. Hydrological Processes. 27 (6): 959–974. doi:10.1002/hyp.9652.
Cooper RJ, Krueger T, Hiscock KM, Rawlins BG. 2015. High-temporal resolution fluvial sediment source fingerprinting with uncertainty: A Bayesian approach. Earth Surface Processes and Landforms. 40(1): 78–92. doi:10.1002/esp.3621.
Davies J, Olley J, Hawker D, McBroom J. 2018. Application of the Bayesian approach to sediment fingerprinting and source attribution. Hydrological Processes. 32(26): 3978–3995.
Devereux OH, Prestegaard KL, Needelman BA, Gellis AC. 2010. Suspended-sediment sources in an urban watershed, Northeast Branch Anacostia River, Maryland. Hydrological Processes. 24: 1391–1403.doi. 10.1002/hyp.7604.
Franks SW, Rowan JS. 2000. Multi-parameter fingerprinting of sediment sources: Uncertainty estimation and tracer selection. Comput. Methods Water Resour. 13:1067–1074.
Gellis AC, Hupp CR, Pavich MJ, Landwehr JM, Banks WSL, Hubbard BE, Langland MJ, Ritchie JC, Reuter JM. 2009. Sources, transport, and storage of sediment in the Chesapeake Bay Watershed. U.S. Geological Survey ScientificInvestigations Report. 2008–5186.pp.95: 10.3133/sir20085186
Gholami, H., Jafari TakhtiNajad, E., Collins, A.L. and Fathabadi, A. 2019. Monte Carlo fingerprinting of the terrestrial sources of differentparticle size fractions of coastal sediment deposits using geochemicaltracers: some lessons for the user community. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-05443-0
Gholami H, Telfer MW, Blake WH, Fathabadi A. 2017. Aeolian sediment fingerprinting using a Bayesian mixing model. Earth Surf. Process. Landforms. 42: 2365–2376. doi: 10.1002/esp.4189.
Haddachi A, Olley J, Pietsch T. 2015. Quantifying sources of suspended sediment in three size fractions. J. Soils Sediments. 15: 2086–2100.
Haddadchi A, Olley J, Laceby P. 2014. Accuracy of mixing models in predicting sediment source contributions.Sci. Total Environ,Nov. 1: 497–498:139–52.
Haddadchi A, Ryder D, Evrard O, Olley J. 2013. Sediment fingerprinting in fluvial systems: Review of tracers, sediment sources and mixing models. International Journal of Sediment Research. 28: 560–578. doi.org/10.1016/S1001-6279(14)60013-5.
Hughes AO, Olley JM, Croke JC, McKergow LA. 2009. Sediment source changes over the last 250 years in a dry-tropical catchment, central Queensland, Australia. Geomorphology. 104: 262–275.doi.org/10.1016/j.geomorph.2008.09.003.
Jafari TakhtiNajad, E, Gholami H, Collins AL. and Fathabadi, A. 2019. Identifying and quantifying the terrestrial sediment source contributions to coastal dunes for targeting wind erosion mitigation in Jagin Wateershed, Hormozgan province, Iran. Watershed Management Research, vol 32, no.1, Ser.No:122, Springer, 3-18. Doi:10.22092/wmej.2019.123109.1142.
KlagesMG, HsiehYP. 1975. Suspended solids carried by the GallatinRiver of southwestern Montana: II. Using minerology for inferringsources. J Environ Qual. 4:68–73.
Koiter AJ, Owens PN, Petticrew EL, Lobb DA. 2013. The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins. Earth-Science Reviews. 125: 24–42.
Laceby JP, Olley J, Pietsch TJ, Sheldon F, Bunn SE.2015. Identifying subsoil sediment sources with carbon and nitrogen stable isotope ratios. Hydrol. Process. 29(8): 1956–1971. doi: 10.1002/hyp.10311.
Lees JA. 1997. Mineral magnetic properties of mixtures of environmental andsynthetic materials: linear additivity and interaction effects. Geophys. J. Int. 131:335–346.
Miller J, Macklin G, Orbock Miller SM. 2015. Application of geochemical tracersto fluvial sediment. Springer Publishing.
Motha JA, Wallbrink PJ, Hairsine PB, Grayson RB. 2003. Determining the sources of suspended sediment in a forested catchment in southeastern Australia. Water Resources. 39 (3):1056. doi:10.1029/2001wr000794.
Mukundan R, Walling DE, Gellis AC, Slattery MC, Radcliffe DE. 2012. Sediment source fingerprinting: transforming from a research tool to a management tool. J. Am. Water Resour. Assoc. 48: 1241–1257.
Owens PN, Blake WH, Gaspar L, Gateuille D, Koiter AJ, Lobb DA, Petticrew EL, Reiffarth DG, Smith HG, Woodward JC. 2017. Fingerprinting and tracing the sources of soils and sediments: earth and ocean science, geoarchaeological, forensic, and human health applications. Earth Sci. Rev. 162:1–23. https://doi.org/10.1016/j. earscirev.2016.08.012.
Palazón L, Gaspar L, Latorre B, Blake WH, Navas A. 2015. Identifying sediment sources by applying
1655 a fingerprinting mixing model in a Pyrenean drainage catchment. J. Soils Sediments. 15: 2067–2085.
Peart MR, Walling DE. 1986. Fingerprinting sediment source: the example of a drainage basin in Devon, UK. In: Drainage Basin Sediment Delivery. IAHS Publ. 159, IAHS Press, Wallingford, UK. pp 41–55.
Porto P, Walling DE, Cogliandro V, Gallegari G. 2016. Validating a mass balance accounting approach to using 7Be measurements to estimate event‐based erosion rates over an extended period at the catchment scale. Water Resource Research. 52(7): 5285–5300.
Slattery M, Walden J, Burt TP. 2000. Fingerprinting suspended sediment sources using mineral magnetic measurements- A quantitative approach. Tracers in geomorphology, John Wiley and Sons: pp. 309–322.
Smith HG, Blake WH. 2014. Sediment fingerprinting in agricultural catchments: A critical re-examination of source discrimination and data corrections. Geomorphology. 204: 177–191.
Vale SS, Fuller IC, Procter JN, Basher LR, Smith I E. 2016. Characterization and quantification of suspended sediment sources to the Manawatu River, New Zealand. Science of the Total Environment. 543: 171–186.
Wall GJ, Wilding LP. 1975. Minerology and related parameters of fluvialsuspended sediments in Northwestern Ohio. J Environ Qual. 5:168–173.
Walling DE. 2005. Tracing suspended sediment sources in catchments and river systems. Science of the Total Environment. 344(1–3): 159–184. doi:10.1016/j.scitotenv.2005.02.011.
WallingDE, Woodward JC, Nicholas AP. 1993. A multi-parameterapproachto fingerprinting suspended-sedimentsources.In: Tracers in hydrology.IAHS Publ. 215, IAHS Press, Wallingford, UK. pp 313–318.
Wood PA. 1978. Fine-sediment mineralogy of source rocks andsuspended sediment, rother catchment, West Sussex.EarthSurfProcess. 3:255–263.