ارزیابی توان رسوب زایی سازندهای آبخیز خانقاه سرخ ارومیه با شبیه ساز باران

نوع مقاله : پژوهشی

نویسندگان

1 کارشناسی‌ارشد آبخیزداری، دانشگاه ارومیه

2 دانشیار بازنشسته‌ی دانشگاه ارومیه

3 استادیار دانشکده‌ی منابع طبیعی دانشگاه ارومیه

چکیده

فرسایش یکی از عمده‌ترین عامل‌های اتلاف آب و خاک است. دلیل اصلی ناموفقیت در مهارکردن فرسایش ممکن است کم‌بودن آگاهی از این پدیده و شناخت آن باشد. ارزش خاک فراوان است و جابه‌جاشدن اجزای تشکیل‌دهنده‌ی آن مشکل‌های بعدی درپی‌دارد، بنابراین معضل فرسایش باید ریشه‌یابی و مهار شود. لازم است که حساسیت سازندها به فرسایش مشخص کرده شود تا بتوان به‌وسیله‌ی آن فرسایش‌‌پذیری سازندهای مختلف را مشخص کرد. در این پژوهش توان رسوب‌زایی سازندهای حوزه‌ی خانقاه سرخ ارومیه را با دستگاه شبیه‌ساز باران مدل BSTF بررسی شد. در هریک از سازندها رسوب خاک در دو شدت بارندگی 40 و 50 میلی‌متر بر ساعت و در دو شیب 13-0 و 25-13% اندازه‌گیری شد. نتایج نشان داد که بیش‌ترین و کم‌ترین میزان رسوب به‌ترتیب در سازند OML (آهکی ریفی معادل قم) (107/4گرم) و سازند CM (آمیزه‌ی تکتونیکی) (4 گرم) ایجاد شده است. سازند OML به‌دلیل به‌همراه داشتن لایه‌ی آهک‌رسی که مقاومت متوسط تا ضعیفی در مقابل فرسایش دارد، باعث تولید بیش‌ترین رسوب شده است، و کم‌ترین رسوب در سازند CM است که مقاومت بسیار زیادی در مقابل فرسایش دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Erodibility of Formations in the Khangah-Sorkh Watershed (Urmia) Using a Rain Simulator

نویسندگان [English]

  • Zaher Alizadeh 1
  • Ahmad Mahmoodzadeh 2
  • Habib Nazarnejad 3
1 Master's degree in Watershed Management, Urmia University
2 Retired Associated Professor, Faculty of Natural Resources, Urmia University
3 Assistant Professor, Faculty of Agriculture & Natural Resources, Urmia University
چکیده [English]

Erosion is one of the major causes of waste of water and soil. Perhaps the main reason for failure to control erosion is the weakness of knowledge and recognition of this phenomenon. Due to the great value of soil and the subsequent problems arising from the movement of its constituents, the erosion problem must be understood and controlled. Therefore, one needs to determine the susceptibility of geologic formations to erosion, in order to determine its mitigation. This research has been carried out in order to investigate the erodibility potential of the Khanghah-Sorkh (Urmia) watershed using the BSTF rainfall simulator. The simulation was performed at two intensities of 40 and 50 mm/hr on two slopes of 0-13 and 13-25% on each geologic formation. The results showed that the highest and lowest sediments were collected from OML (the calcic-reefy of Qom) (107.4 g) and the CM Formation (tectonic mix) (4 g). Thus, the OML formation which contains marl layers, is more susceptible to erosion and produce a larger amount of sediment relative to that of the CM formation which highly resistant to erosion. Therefore, it yields a larger amount of sediment.

کلیدواژه‌ها [English]

  • Sediment
  • geological formation
  • rainfall simulator
  • erosion
Abdinezhad P, Fieznia S, Payrowan, HR. 2014. Comparing Susceptibility of Marl Lands to Erosion Using Rain Simulator in Zanjan Province. Iranian Journal of soil Research. 28(2): 407–419. (In Persian).
Aksoy H, Eris E, Tayfur G. 2017. Empirical Sediment Transport Models Based On Indoor Rainfall Simulator and Erosion Flume Experimental Data: Empirical Sediment Transport Models. Land Degradation and Development. 28(4):1320–1328.
Cheng Q, Ma W, Cai Q. 2008. The relative importance of soil crust and slope angle in runoff and soil loss: A case study in the hilly areas of the Loess Plateau, North China. GeoJournal. 71(2–3): 117–125.
Deng ZQ, de Lima JL, Jung HS. 2008. Sediment transport rate-based model for rainfall-induced soil erosion. Catena. 76(1): 54-62.
Ekwue EI, Bharat C, Samaroo K. 2009. Effect of soil type, peat and farmyard manure addition, slope and their interactions on wash erosion by overland flow of some Trinidadian soils. Biosystems engineering. 102(2): 236–243.
Feiznia S, Qomi S, Youneszadeh-Jalili S, Karimizadeh K, 2016. Evaluation of erosion susceptibility to erosion in Dunblid subwatershed, Taleghan watershed. 6th Iranian National Conference of Environmental geology, May 12, Tehran, Iran. (In Persian).
Hesari, B. 2007. Determination of Intensity - Duration - Frequency Curves for Irrigation and Drainage Plans (Case Study in West Azerbaijan). M.Sc. Thesis, Faculty of Agriculture, Tabriz University.  (In Persian).
Huang J, Wu P, Zhao X, 2013. Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena. 104: 93–102.
Hudson N, 1995. Soil Conservation. Iowa State University Press, Ames, IA, USA.392 P.
Mathys N, Brochot S, Meunier M, Richard D. 2003. Erosion quantification in the small marly experimental catchments of Draix (Alpes de Haute Provence, France). Calibration of the ETC rainfall–runoff–erosion model. Catena. 50(2–4): 527–548.
Nourani, S.N. 2005. Evaluation of Four Methods in order to choose the Best Method for SDR Estimation Case Study: Taleghan Watershed. Master's Degree, Islamic Azad University, Science and Research Branch, Tehran, p. 129. (In Persian).
Peyrowan HR, Shariat Jafari M. 2013. Presentation of a comprehensive method for determining erodibility rate of rock units with a review on Iranian geology. Watershed Engineering and Management. 5(3): 199–214. (In Persian).
Quansah C, 1981. The effect of soil type, slope, rain intensity and their interactions on splash detachment and transport. Journal of Soil Science. 32(2): 215–224.
Zheng MG, Cai QG, Chen H. 2007. Effect of vegetation on runoff-sediment yield relationship at different spatial scales in hilly areas of the Loess Plateau, North China. Stxben.  27(9):3572–3581.