منشأیابی مکان‌های مستعد فرسایش بادی و گردوغبار با شبیه‌ساز‌ USEPA در منطقه ی دلازیان، شهرستان سمنان

نوع مقاله : پژوهشی

نویسندگان

1 استادیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شاهد، تهران

2 دانش‌آموخته کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شاهد تهران

چکیده

فرسایش بادی و گردوغبار ناشی از آن از مهم­ترین چالش­ها در بسیاری از سرزمین‌های جهان از جمله ایران است. شناسایی منشأ تشکیل گردوغبار اولین مرحله برای مهار این پدیده است. برای منشأیابی فرسایش بادی و گردوغبار روش‌های پرشماری از جمله سنجش‌ازدور، تجزیه‌ی فیزیکی و شیمیایی، و شبیه‌ساز‌های تجربی هست. هدف از این پژوهش منشأیابی گردوغبار در استان سمنان با شبیه‌ساز‌ سازمان حفاظت محیط‌زیست آمریکا است. برای شبیه‌سازی با این روش در سال 1397 50 مکان در منطقه­ ی دلازیان در استان سمنان شناسایی و به روش تصادفی نمونه‌برداری شد. آزمون‌های فیزیکی و شیمیایی انجام شد. شاخص‌های اقلیمی اندازه‌ی بارندگی، تبخیروتعرق، سرعت باد، دما، و رطوبت برای دوره­ ی 9 ساله از سازمان هواشناسی کل کشور گرفته‌شد. با کاربرد شاخص‌های اقلیمی و ویژگی‌های فیزیکی خاک در شبیه‌ساز‌های مختلف، اندازه‌ی فرسایش Q، Q30 و Q50 جداگانه محاسبه شد. نقشه‌ی ویژگی‌های اقلیمی، بافت، و اندازه‌ی فرسایش خاک با روش‌های زمین‌آماری و درون‌یابی RBF و IDW ترسیم شد. تنها اندازه‌های لای، Q30 و Q50 در شرایط بهنجار بود، و بنابراین به روش‌های زمین‌آماری درون‌یابی شد. بعد از تلفیق نقشه‌ها، مکان‌های بحرانی و خیلی‌بحرانی مستعد گردوغبار به‌دست آمد. نتیجه نشان داد که منطقه از دیدگاه شاخص خشکی (19/02)، بارندگی (127/96 میلی‌متر)، و پستی‌بلندی (دشت) در وضعیت خیلی‌بحرانی، و از دیدگاه بافت خاک (میانگین بیش از 50% شن و کم­تر از 30% لای) در وضعیت بحرانی بود. منطقه­ ی دلازیان با اندازه‌ی فرسایش بادی (Q) بین kg/ha/yr 55-9 در وضعیت هشدار، و با روزهای گردوغباری با میانگین 2 روز در سال، با میانگین سرعت باد m/s 1/98 در وضعیت عادی بود. نتیجه‌های کلی نشان داد که اگرچه برخی از شاخص‌ها بحرانی و خیلی‌بحرانی بود، منطقه­ از دیدگاه منشأ گردوغبار در تراز عادی است.

کلیدواژه‌ها


عنوان مقاله [English]

The Application of USEPA Model for Identification of Dust Sources in the Delazan District, Semnan County

نویسندگان [English]

  • Davood Namdar Khojasteh 1
  • Esmail Moradi 2
1 Assistant Professor, Department of Soil Science, Faculty of Agriculture, Shahed University, Iran
2 Graduated M.Sc. of Soil Science, Department of Soil Science, Faculty of Agriculture, Shahed University, Iran
چکیده [English]

W




ind erosion and dust generation is a great challenge worldwide, especially in Iran. Identification of the dust source is the first step in mitigating this occurrence. There are various approaches to detect wind erosion and dust sources including remote sensing, physical and chemical analyses, experimental models. The purpose of this study was to use the US Environmental Protection Agency (USEPA) model to identify sources of dust in the Semnan Municipality. Samples were collected randomly from 50 study points in the Municipality of Semnan (2018), and physical and chemical experiments were performed on the samples. Climate indicators, namely: rainfall, evapotranspiration and wind speed, temperature, and relative humidity for a period of 9 years were also been collected from the Meteorological Organization of Iran. The dust emission rates of Q, Q30, and Q50 were measured separately using climatic parameters and physical characteristics of the soils in different models. Geostatistic and interpolation techniques, including RBF and IDW, were also used to plot the map of climatic parameters, texture, and dust emission rates. According to the statistical tests, only the values of silt, Q30 and Q50 were normal; therefore, an interpolation of these indicators was performed using the geostatistical methods. The critical and supercritical points of sources of dust were then determined after the maps were combined. The findings indicated that the study area was super-critical in drought (19.02), rainfall (177.96 mm), and region topography (plain) indicators, and in a critical condition for soil texture with an average of more than 50 percent sand and less than 30 percent silt. The dust emission rate (Q) ranged from 9-55 kg/ha.y pointed into the warning condition for, the regional average of dusty days (2 days/y). However, the days with a wind speed of 1.98 m/s were considered as a normal condition. In a nutshell, the results indicated that the study area was not a dust source, despite the critical and supercritical conditions for some of the indicators.

کلیدواژه‌ها [English]

  • Climate
  • critical condition
  • physical properties
  • wind erosion
Aarons S, Blakowski M, Aciego I, Stevenson W, Sims S, Scott R, Aarons C. 2017. Geochemical characterization of critical dust source regions in the American West. Geochimica at Cosmochimica Acta. 215 (1):141–161.
Ahmadi H, Jafari M, Golkarian A, Sadat Abrisham A, Laflen J. 2007. Estimating water erosion and sediment using WEPS Model: A case study of Bar-Eried watershed, Neyshbur. Journal of Pajouhesh-va-Sazandegi. 20 (2): 161–172. (In Persian).
Azimzadeh HR. 2007. Study on application of wind erosion models of WEPS and IRIFR2 in Ardakan lands, Yazd. Ph.D. Faculty of agriculture, University of Tehran. (In Persian).
Azmoodeh A, Kavian A, Solaimani K, Vahabzadeh Gh. 2010. Comparing runoff and soil erosion in forest, dry farming and garden land uses soils using rainfall simulator. Journal of Water and Soil. 24(3): 490–500. (In Persian).
Behlooli M. 2006 Evaluation of wind erosion in selected farms of Yazd plain using web and IRIFR model, M.Sc. Thesis, Faculty of Natural Resources, University of Tehran. 215 p. (In Persian).
Black CA .1965. Methods of soil analysis. Part I, American Society of Agronomy. Madison, Wisconsin, USA. 1572 p.
Boali A, Jafari R, Bashari H.  2017. Wind erosion estimation and assessment using Bayesian belief networks in eastern Isfahan township. Desert Ecosystem Engineering Journal. 6(14): 47–57.
Colazo JC, Buschiazzo D. 2010. Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma. 159(1–2): 228–236.
Du H, Wang T, Xue X, Li S. 2018. Modelling of sand/dust emission in northern China from 2001 to 2014. Geoderma. 330 (1):162–176.
Gao S, Wang Y, Shan M, Teng Y, Hong N, Sun Y, Mao J, Ma Z, Xiao J, Azzi M. 2020. Wind-tunnel and modelled PM10 emissions and dust concentrations from agriculture soils in Tianjin, northern China. Aeolian Research. 42:100–562.
Ghorbani J, Kardvani P. 2014. Study of Ahvaz dust textures with X-ray analysis method and the relationship between storms exacerbated by destruction of Hoorolazim wetlands. Journal of Wetland Ecobiology. 6(20): 91–102. (In Persian).
Goossens D. 2007. Bias in grain size distribution of deposited atmospheric dust due to the collection of particles in sediment catchers. Catena, 70(1): 16–24.
Gvancheng H. 2004. Consideration on the integrated watershed management in the western China. In: The Proceeding of Symposium on Hydropower and Sustainable Development. Beijing, China. pp. 24–27.
Hanifehpour M, Jabbari B. 2013. Effect of drought intensity and duration on wind condition and wind Erosion (case study: Tehran province). 3rd Conference on Wind Erosion and Dust Storms - Yazd University. pp.10–12. (In Persian).
Heydarian P, Azhdari A, Joudaki M, Darvish Khatooni J. Shahbazi R. 2015. Identify interior source of dust storms using remote sensing, GIS and geology. Scientific Quarterly Journal. 27 (105): 33–46. (In Persian).
Jarrah M, Maye S, l Tatarko J, Funk R, Kuka K. 2020. A review of wind erosion models: Data requirements, processes, and validity. Catena. 187: 104–388
Kalehhouei M, Kavian A, Gholami L, Jafarian Z. 2018. Protective impact of colza straw (Brassica napus L.) on runoff and soil loss control using rainfall simulation. Watershed Management Research. 31(118):73–82. (In Persian).
Karimi Z, Sadeghi SH, Bahrami HA. 2015. Variations of runoff generation during rainfall event when different levels of polyacrylamide in its powder vs liquid form applied. Iranian Journal of Soil and Water Research. 46(3): 443–453. (In Persian).
Karimian B, Landi A, Hojati S, Ahadian J. 2015. Physicochemical and mineralogical characteristics of dust particles deposited in Ahvaz city, Iranian Journal of Soil and Water Research. 47 (1): 159–173. (In Persian).
Kelarestaghi A, Ahmadi H, Esmali A, Jafari M, Ghodosi J. 2009. Comparison of runoff and sediment yield from different agricultural treatments. Iranian Journal of Watershed Science and Engineering. 2(5): 41–52. (In Persian).
Klute A. 1988. Methods of soil analysis, part 1, physical and mineralogical methods (2nd edition), Madison, Wisconsin, 1188 p.
Kouchami S, Besalatpour A, Bashari H, Shirani H, Esfandiarpour Broujeni I. 2017. Assessment of IRIFR model capability in simulation of soil loss in different wind geomorphology landforms using wind erosion meter. Arid Biome Scientific and Research Journal. 7(1): 13–25. (In Persian).  
Liu X, Song H, Lei T, Liu P, Xu C, Wan D, Yang Z, Xia H, Wang T, Zhao H. 2021. Effects of natural and anthropogenic factors and their interactions on dust events in Northern China. Catena. 196:104919.
Liu Y, Wang G, Hu Z, Shi P, Lyu Y, Zhang G, Gu Y, Liu Y, Hong C, Guo L. 2020. Dust storm susceptibility on different land surface types in arid and semiarid regions of northern China. Atmospheric Research. 243: 105031.
Mahmoodabadi M, Dehghani F, Azimzadeh HR. 2011. Effect of soil particle size distribution on wind erosion rate. Journal of Soil Management and Sustainable Production. 1(1): 81–97.
Mao D, Lei J, Zeng F, Rahmutulla Z, Wang C, Zhou J. 2014. Characteristics of wind erosion and deposition in oasis-desert ecotone in southern margin of Tarim Basin, China. Chinese Geographical Science. 24(6): 658–673.
Mihanprast S, Nekouei S, Torabi A, Rahimi M. 2015. Evaluation of wind erosion intensity using IRIFR method and determination of transport and sedimentation areas (Case study: south of Semnan). Semnan University, Faculty of Agriculture. 200 p. (In Persian).
Mirzaei H, Moazed H. 2005. Comparisons of different potential evatransporation methods. National Conference on Irrigation and Drainage Management, Shahid Chamran University of Ahvaz, Faculty of Water Science Engineering. (In Persian).
Mosaffaie J, Talebi A. 2014. A statistical view to the water erosion in Iran. Journal of Extension and Development of Watershed Managment. 2(5): 9–17. (In Persian).
 Namdar Khojasteh D,  Goudarzi GR, Taghizadeh-Mehrjardi R, Asumadu-Sakyi A, Fehresti-Sani M. 2020. Long-term effects of outdoor air pollution on mortality and morbidity–prediction using nonlinear autoregressive and artificial neural networks models. Atmospheric Pollution Research. 12(2): 46–56.
Pi H, Sharratt B, Feng G, Lei J. 2017. Evaluation of two empirical wind erosion models in arid and semi-arid regions of China and the USA. Environmental Modelling & Software. 91: 28–46.
Pouyan S, Mirakbari M, Afzali F. 2015. Estimating the wind erosion climatic factor using regional distribution function. Journal of Soil Management and Sustainable Production. 5 (1): 201–214. (In Persian).
Qasemi M. 2010. Erosion modeling of surface formations and sediment performance in Hana dam watershed using MPSIAC Information System (GIS) modified method and geography, M.Sc. Mohaghegh Ardabili University, Ardabil. 220 p. (In Persian).
Ranjbar H, Bazgir M, Namdar Khojasteh D. Rostami Nia M. 2019. Identification of dust sources in Ilam province. Iranian Journal of Range and Desert Research. 26(3): 675–688. (In Persian).
 Refahi H. 2006. Wind erosion and its control. Institute of printing and publishing of Tehran University. (In Persian).
Sadeghi Ravesh M, Reyahi Khoram M, Khosravi H. 2012. Zoning wind erosion potential risk in central Iran using modified numerical taxonomy model. Journal of Agriculture and Environment. 12(1): 91–99.
Sadeghi S, Azari M, Ghaderi B. 2008. Field evaluation of the hillslope erosion model (HEM) in Iran. Biosystems Engineering. 99(2): 304–311.
Sedighi F, Khaledi Darvishan A, Zare MR. 2020. Assessment of the slop gradient on the estimated erosion and sediment delivery ratio by using 137Cs in the Khamsan representative watershed. Watershed Management Research. 33(3):2–19. (In Persian).
Semnan Department of Meteorology. 2020. Datasheet 2007-2016.
Tai Samiromi S, Reza Moradi HR, Khodaghli M, and Maryam Ahmadi M. 2013. Recognition and study of factors affecting the phenomenon of dust in western Iran. Journal of Human and environment. 27 (1):1–12.
Taylor D. 2002. Dust in the Wind. 110(2): A80–A87.
Waezi A. 2010. How to predict the wind erosion using WEQ and RWEQ models, 2th national conference on wind erosion and dust storms, Yazd University.
Wang A, Li F, Yang S. 2011. Effect of polyacrylamide application on runoff, erosion, and soil nutrient loss under simulated rainfall. Pedosphere. 21(5): 628–638.
Wang X, Pu W, Shi J, Bi J, Zhou T, Zhang X, Ren Y. 2015. A comparison of the physical and optical properties of anthropogenic air pollutants and mineral dust over Northwest China. Journal of Meteorological Research. 29(2): 180–200.
Webb N, McGowan HA, Phinn SA, leys J, McTainsh G. 2009. A model to predict land susceptibility to wind erosion western queen's land Australia. Journal of Environmental Modeling and Software. 2 (24): 214–227.
Xuan J, Liu G, Du K. 2000. Dust emission inventory in northern China. Atmospheric Environment. 34(26): 4565-4570.
Xuan J, Sokolik IN, Hao J, Guo F, Mao H, Yang G. 2004. Identification and characterization of sources of atmospheric mineral dust in East Asia. Atmospheric Environment. 38(36) :6239–6252.
Xuan J. 1999. Dust emission factors for environment of Northern China. Atmospheric Environment. 33(11): 1767–1776.
Zehtabian G, Ahmadi H, ٍEkhtesasi MR, Jafari R. 2002. Intensity determination of wind erosion in Kashan area by the desertification model. Iranian Journal of Natural Resources. 55 (2): 145–157. (In Persian).