ارتباط عامل‌ها و ویژگی های شکل زمین با بار معلق در آبخیز رستم آباد استان ایلام

نوع مقاله : پژوهشی

نویسندگان

1 استادیار بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان ایلام، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایلام، ایران

2 استادیار بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خوزستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز، ایران

3 استادیار بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران

چکیده

یکی از دشواری‌‌های آبخیز تحلیل رابطه‌های آماری و کمی عامل‌ها و ویژگی‌های تاثیرگزار بر تولید رسوب و هدررفت خاک است. هدف این تحقیق مدل‎سازی رابطه‌ی میان اندازه‌ی تولید بار معلق با عامل‌های مدل تجربی MPSIAC و اندازه‌ی بار معلق مشاهده‎شده با ویژگی‎های شکل‌زمین و ارتباط آن‌ها با تولید بار معلق در آبخیز است. حوزه‌ی رستم‎آباد استان ایلام با چهار زیرحوزه‌ی مشخص و مجهز به ایستگاه آب‌سنجی از حوزه‎های جنوبی استان ایلام به روش تصادفی ساده انتخاب شد. برای برآوردکردن اندازه‌ی تولید رسوب مدل تجربی به‌کار برده‌شد. آمار آب‌دهی و بار معلق چهار ایستگاه آب‌سنجی و 12 ایستگاه هواشناسی 30 سال از 1370 تا 1399 تهیه شد. اطلاعات گیتاشناسی زیرحوزه‌ها از نقشه‌های پستی‌بلندی محاسبه و ویژگی‌های شکل‌زمین زیرحوزه‌ها از مدل رقومی بلندی استخراج شد. با تحلیل عاملی و تحلیل خوشه‌یی، عامل‌ها و متغیرهای تاثیرگزار مشخص شد، و زیرحوزه‌ها رده‌بندی و به منطقه‌های همگن تقسیم کرده‌شد. برای بررسی همبستگی میان متغیرهای مستقل و وابسته، بهنجاربودن داده‌ها با آزمون‎های شاپیرو-ویلک و کولموگروف-اسمیرنوف در نرم‎‌افزار اس‌پی‌اس‌اس انجام شد. برای تحلیل ارتباط میان عامل‌های مدل تجربی و متغیرهای شکل‎زمین با بار معلق هر زیرحوزه روش وایازی چندگانه به‌کار برده‌شد. نتیجه‌ نشان داد که اندازه‌ی بار معلق تولیدشده با عامل زمین‎شناسی، کاربری زمین، وضعیت فعلی فرسایش در سطح آبخیز، فرسایش رودخانه‎یی و پستی‌بلندی حوزه همبستگی مثبت داشت و در تراز 0/001 معنی‌دار بود. اندازه‌ی بار معلق مشاهده‌‌شده با شاخص شیب، ضریب گردی، بارندگی، ناهمواری و مساحت حوزه همبستگی مثبت داشت و در تراز 0/001 معنی‌دار بود. برای تأثیرگزاری عامل‌ها و متغیرها بر اندازه‌ی بار معلق زیرحوزه‌ها روش تحلیل مؤلفه‌های اصلی و تحلیل خوشه‌یی به‌کار برده‌شد. کاربری حوزه 25/24% از پراش همه‌ی متغیرهای پژوهش را تبیین کرد. سه عامل کاربری حوزه، وضعیت فعلی فرسایش در سطح حوزه، و زمین‌شناسی، و دو سنجه‌ی ضریب گردی و شیب توانست 86% از پراش همه‌یی متغیرهای پژوهش را تبیین کند.

کلیدواژه‌ها


عنوان مقاله [English]

Relationship Between Geomorphic Factors and Parameters with Sediment in Rostamabad Watershed of Ilam Province

نویسندگان [English]

  • Shamsollah Asgari 1
  • Freidoon Soleimani 2
  • Kourosh Shirani 3
1 Assistant Professor, Soil Conservation and Watershed Management Research Department, Ilam Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Ilam, Iran
2 Assistant Professor, Soil Conservation and Watershed Management Research Department, Khuzestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
3 Assistant Professor, Soil Conservation and Watershed Management Research Department, Agricultural Research and Training Center and Natural Resources of Isfahan Province, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
چکیده [English]

Analysis of statistical relationships and quantitative factors and parameters affecting the production of sediment and soil loss is one of the problems of the watershed. The purpose of this study is to model the relationship between sediment production rate using MPSIAC experimental model factors and observed sediment rate using geomorphic parameters and their relationship with sediment yield in the watershed. Rastamabad watershed of Ilam province was selected by a simple random method with four sub-watersheds identified and equipped with a hydrometric station from the southern basins of Ilam province. In this study, an experimental model was used to estimate the sediment yield. Flow and sediment data of four hydrometric stations and 12 meteorological stations from 1991 to 2020 for 30 years were prepared by the Regional Water Company and the General Meteorological Office of Ilam Province. Physiographic information of the sub-watersheds was calculated from topographic maps with a scale of 1.25000 and the geomorphic features of the sub-watershed were extracted from the digital elevation model. Using factor analysis and cluster analysis, influential factors and variables were identified and sub-domains were classified and divided into homogeneous regions. In order to investigate the correlation between independent and dependent variables, the data normality test was performed by Shapiro-Wilk and Kolmogorov-Smirnov tests in SPSS software. The statistical multiple regression method was used to analyze the relationship between experimental model factors and geomorphic variables with sediment yield of each watershed. The results showed that the sediment yield had a positive correlation with geological factors, land use, upland erosion, river erosion and topography of the watershed and was significant (P≤ 0.001). The amount of observed sediment had a positive correlation with slope, circulatory ratio, rainfall, topography, and area of the watershed and was significant (P≤ 0.001). In order to influence the factors and variables on the amount of sediment in the sub-watersheds, the method of principal component analysis and cluster analysis were used. The results showed that the land use explained 25.24% of the variance of all research variables. Finally, the three factors of land use, upland erosion, and geology, and two parameters of circulatory ratio and slope were explained at 86%. Of the variance of all research variables.

کلیدواژه‌ها [English]

  • Geomorphic properties
  • main components
  • multivariate regression
  • sediment
Aher P, Adinarayana J, Gorantiwar SD. 2014. Quantification of morphometric characterization and prioritization for    management planning in semi-arid tropics of India: A remote sensing and GIS approach, Journal of Hydrology, 511: 850–860.
Ahmadi H. 2007. Applied geomorphology: Water Erosion (Volume 1), University of Tehran Publications, 714 p. (In Persian).
Ahmadzadeh H, Abdideh M, Qarashi M, Rangzan K, Arian, M. 2011. Relative assessment of active infrastructure using morphometric analysis, A case study of the Dez River Basin, Southwestern Iran, Quarterly Journal of Earth Sciences, 20(80): 33–46. (In Persian).
Alizadeh A. 2015. Applied hydrology, Imam Reza Publications, 972 p. (In Persian).
Aris MG, Varni M, Chagas C. 2016. Suspended sediment concentration controlling factors: An analysis for the Argentine Pampas region, Hydrological Science Journal, 61 (12): 2237–2248.
Asghari Saraskanrood S, Qala E. 2019. Investigating the relationship between hydrogeomorphic properties and sediment production (Case study: Qarnaqo Basin in East Azerbaijan Province), Quantitative Geomorphological Research, 8(1): 164–146. (In Persian).
Heidari Tashe Kaboud Sh, Rezai H. 2019. Estimation of suspended sediment load values of the river using colonial competition algorithm, Journal of Science and Engineering Elites, 14(2): 288–282. (In Persian).
 Honarbakhsh A, Niazi A, Soltani Koopai S, Tahmasebi P. 2019. Modeling the relationship between sediment rate and hydrological and environmental characteristics of the basin (Case study: Dez Dam Basin), Quantitative Geomorphological Research, 8(1): 117–105. (In Persian).
Gholami L, Sadeghi HR, Khaledi Darvishan AW, Telluri AR. 2008. Storm-Wise sediment yield prediction using rainfall and runoff variables, Journal of Agricultural Sciences and Industries, 22(2): 263–271. (In Persian).
 Fattahi MH, Talebzadeh Z. 2017. Relationship between catchment compression coefficient and its fractal properties, Iran Water Resources Research, 13(1): 203–191 .(In Persian).
Karami F, Bayati Khatibi M. 2019. Modeling soil erosion and prioritizing sediment production in Sattarkhan Ahar dam basin using MUSLE and SWAT models, Hydrogeomorphology, 5(18): 137–115. (In Persian).
 Lamb E, Toniolo H. 2016. Initial quantification of suspended sediment loads for Three Alaska North Slope Rivers, Water, 419 (8): 2–11.
Mahdavi M. 2015. Applied hydrology, University of Tehran Press. 342 p. (In Persian).
 Motamedi R, Azari M. 2017. The relationship between geomorphic features and watershed sediment (Case study: Selected sub-basins of Khorasan Razavi), Environmental Erosion Research, 4(28): 82–101. (In Persian).
Naieby H. 2015. Advanced applied statistics with SPSS: Factor Analysis, Path Analysis, Cluster Analysis, Logistic Regression, Multivariate Regression, University of Tehran Press, 400 p.
Naseri F, Azari M, Dastarani M. 2019. Optimization of sediment level equation coefficients using genetic algorithm (Case study: Ghazaghli and Bagh Abbasi Stations), Iranian Journal of Irrigation and Water Engineering, 9(35): 97–82. (In Persian).
 Pal B, Samanta S, Pal DK. 2012. Morphometric and hydrological analysis and mapping for Watut watershed using remote sensing and GIS techniques, International Journal of Advances in Engineering & Technology, 12(1): 357–376.
 Patrick Laceby J, McMahon J, Evrard O, Olley J. 2015. A comparison of geological and statistical approaches to element selection for sediment fingerprinting, Journal of Soils and Sediments, 15(8): 2117–2131.
 Pohlert T. 2015. Projected climate change impact on soil erosion and sediment uield in the River Elbe catchment, Springer International Publishing Switzerland, pp. 97–108.
Salim AHA. 2014. Geomorphological analysis of the morphometric characteristics that determine the volume of sediment yield of Wadi Al-Arja, South Jordan, Journal of Geographical Sciences, 24(3): 457–474.
 Schumm SA. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey, Geological Society of America Bulletin, 67(5): 597–646.
 Shayan S, Zare G, Yamani M, Sharifi Kia M. 2013. Analysis of the trend of statistical changes in discharge and sediment of the catchment area and its application in environmental planning, Iranian Journal of Applied Geomorphology, 1(2): 37– 50. (In Persian).
Sharma SK, Tiwari KN. 2009. Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment, Journal of Hydrology, 374(3): 209–222.
 Strahler AN. 1958. Dimensional analysis applied to fluvially eroded landforms, Geological Society of America Bulletin, 69(3): 279–300.
Strahler AN. 1957. Quantitative analysis of watershed geomorphology, Eos, Transactions American Geophysical Union, 38(6): 913–920.
Tamene L, Park SJ, Dikau R, Vlek PLG. 2006. Analysis of factors determining sediment yield variability in the highlands of northern Ethiopia, Geomorphology, 76(1): 76–91.
 Zare chahuki MA. 2010. Data analysis in natural resources research using SPSS software, first edition, Jahad University Press: 309 p. (In Persian).
 Zhang HY, Shi ZH, Fang NF, Guo MH. 2015. Linking watershed geomorphic characteristics to sediment yield: Evidence from the Loess Plateau of China, Geomorphology, 234(18): 19–27.
Ziegler AD, Benner G, Tantasirin C. 2014. Turbidity-based sediment monitoring in northern Thailand: Hysteresis, variability, and uncertainty, Journal of Hydrology, 519(11): 2020–2039.