ارزیابی احتمال خطر شوری آب های زیرزمینی در دشت‌های جنوبی آبخیز بختگان با مدل‌های آماری، داده مبنا و تحلیل سلسله‌مراتبی فازی

نوع مقاله : پژوهشی

نویسندگان

1 کارشناس فنی طرح حفاظت از تالاب‌های ایران، سازمان حفاظت محیط زیست

2 دانشیار گروه احیای مناطق خشک و کوهستانی، دانشگاه تهران

3 استادیار گروه احیای مناطق خشک و کوهستانی، دانشگاه تهران

4 استادیار گروه مرتع و آبخیزداری، دانشگاه گنبدکاووس

چکیده

مسایل مرتبط با پیاده‌سازی سیاست‌های ملی در زمینه­ی کاهش آسیب‌های طبیعی در کشورهای توسعه‌یابنده نگرانی فراگیری است. در این پژوهش عامل‌های موثر بر خطر، آسیب‌پذیری و احتمال خطر (ریسک) شوری آب‌های زیرزمینی در دشت‌های جنوبی آبخیز بختگان با مساحت 6137 کیلومترمربع با دو مدل‌ شاخص آماری و الگوریتم رده‌بندی درخت تصمیم، و فرآیند تحلیل سلسله‌مراتبی فازی ارزیابی شد. در گام نخست با بررسی داده‌های کیفی آب‌های زیرزمینی از 124 چاه، نقطه‌های رخ‌داد شوری آب‌های زیرزمینی (بر مبنای شاخص هدایت الکتریکی) شناسایی شد. روش حذف ویژگی بازگشتی برای یافتن و انتخاب‌کردن ترکیب اصلی شاخص‌ها در تهیه‌ی نقشه‌های خطر شوری آب‌های زیرزمینی به‌کار برده‌شد. پس از تعیین‌کردن اهمیت هر شاخص با محاسبه‌ی آزمون جک‌نایف، نقشه‌ی خطر شوری آب‌های زیرزمینی با دو مدل‌ شاخص آماری و الگوریتم رده‌بندی درخت تصمیم پیش‌بینی شد.  اندازه‌ی آسیب‌پذیری منطقه به شوری آب‌های زیرزمینی با فرآیند تحلیل سلسله‌مراتبی فازی سنجیده شد. برای ارزیابی کارکرد مدل‌های دومتغیری و اعتبارسنجی مدل‌سازی‌ها آماره‌های حساسیت، ویژگی، صحت و ضریب کاپا، و برای مدل‌های چندمتغیره چهار معیار ضریب تعیین، ضریب تطابق، ضریب کلینگ گوپتا، و ضریب همبستگی به‌کار برده شد. نقشه­ی احتمال خطر شوری آب‌های زیرزمینی از روی‌هم‌گذاشتن نقشه‌های خطر و آسیب‌پذیری تهیه شد. نتیجه‌ها نشان داد که 4/13 کیلومترمربع از منطقه‌های آبیاری‌شده در رده‌ی احتمال خطر بسیار زیاد است، که بیش‌ترین مساحت در میان کاربری‌های گوناگون با آسیب‌پذیری خیلی زیاد است. برپایه‌ی نتیجه‌ی این پژوهش می‌توان گفت که تدوین طرح‌های جامع مدیریتی، نظارت و پایش فعالیت‌های اجرایی مانند تغییر کاربری‌ها، یا درنظر گرفتن شرایط حاکم در پیاده‌سازی کنش‌های احیایی ممکن است به مهار و مدیریت‌کردن احتمال خطر این منطقه‌ها کمک شایانی کند.

کلیدواژه‌ها


عنوان مقاله [English]

Groundwater Salinity Risk Assessment in the Southern Plains of the Bakhtegan Watershed Using Statistical and Data Mining Models and Fuzzy Hierarchical Analysis Process

نویسندگان [English]

  • Hamid Reza Gharechaee 1
  • Aliakbar Nazari Samani 2
  • Shahram Khalighi Sigaroodi, 2
  • Khaled Ahmadaali 3
  • Abolhassan Fathabadi 4
1 Technical Expert of Conservation of Iranian Wetlands Project, Department of Environment, Tehran
2 Associate professor, Department of Arid & Mountainous Region Reclamation, Faculty of Natural Resources College, University of Tehran, Karaj, Iran
3 Assistant Professor, Department of Arid & Mountainous Region Reclamation, Faculty of Natural Resources College, University of Tehran, Karaj, Iran
4 Assistant Professor, Faculty of Natural Resources, University of Gonbad Kavoos, Gonbad Kavoos
چکیده [English]

Issues related to implanting national policies for reducing natural hazards in developing countries are seen as an important and worrying challenge. In this research, the factors affecting the vulnerability, hazard, and risk of groundwater salinity in the southern plains of the Bakhtegan watershed with an area of 6137 km2 were assessed using statistical index models, Classification and Regression Tree (CART), and fuzzy analytic hierarchy process (FAHP). At first, by assessing the data of groundwater quality from 124 wells in the watershed, the points of groundwater salinity occurrence (based on the electrical conductivity parameter) were recognized. After calculating and preparing basic maps related to each of the indicators, we looked for a way for selecting indicators to identify key indicators. To this end, the recursive feature removal (FRE) method was utilized for finding and selecting the main combination of indicators to prepare a map of groundwater salinity hazards. Accordingly, after determining the significance of each indicator by calculating the jackknife test, the salinity hazard map of groundwater was predicted using two models (SI) and (CART). Also, the degree of vulnerability of the region to the salinity of the groundwater was determined using the (FAHP) process. The sensitivity, specificity, accuracy and kappa coefficient statistics were used to evaluate the performance of two-variable models. Also, in order to evaluate the performance of multivariate models, fore criteria of coefficient of determination (R2), conformity coefficient (CC), Kling-Gupta efficiency (KGE), and correlation coefficient (COR) were used. The results of groundwater salinity class risk study showed that 4.13 square kilometers of irrigated areas are in a very high-risk class, which among the various land uses with the highest vulnerability is related to this type of land use. Based on the results of this study, it can be stated that the development of comprehensive management plans, monitoring of executive activities, including change of uses, or taking into account the prevailing conditions in the implementation of rehabilitation operations can help control and manage risk in these areas.

کلیدواژه‌ها [English]

  • Bivariate and multivariate models
  • salinity
  • risk assessment
  • recursive feature elimination
Ashraf  H, Cawood F. 2015. Geospatial subsidence hazard modelling at Sterkfontein Caves. South African Journal of Geomatics, 4 (3): 273–284.
Bierman. 1984. Signal detection theory and ROC analysis. Cognition and Perception. Academic Press, London.
Bonham-Carter GF, Bonham-Carter G. 1994. Geographic information systems for geoscientists: Modelling with GIS. Elsevier, 2(13): 431–522.‏
Bradd J, Gates G. 1997. Overview of factors leading to dryland salinity and its potential hazard in New South Wales, Australia. Hydrogeology Journal, 5(1): 51–67.
Breiman L. 2001. Random forests. Machine Learning, 45(1): 5–32.
Brownson RC, Fielding JE, Green LW. 2018. Building capacity for evidence-based public health: reconciling the pulls of practice and the push of research. Annual Review of Public Health, 39 (1): 27–43
Brzezinski D, Stefanowski J. 2017. Prequential AUC: Properties of the area under the ROC curve for data streams with concept drift. Knowledge and Information Systems, 52(2): 531–562.‏
Chen W. 2017. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology, 297 (15): 69–85.
Dewitte O, Daoudi M, Bosco C, Van Den M. 2015. Predicting the susceptibility to gully initiation in data-poor regions. Geomorphology, 228 (1): 101–115.
Eastman JR. 2006. Idrisi andes. Guide to GIS and Image Processing. Clark Labs, Clark University, Worcester, MA. 3(1): 52–66.
Evans R, Horstman C, Conzemius M. 2005. Accuracy and optimization of force platform gait analysis in Labradors with cranial cruciate disease evaluated at a walking gait. Vet. Surg. 34 (5): 445–449.
Gharechaee H, Moghaddam Nia A, Malekian A, Ahmadi A. 2014. Separation of the effects of climate variability and human activities on runoff of Bakhtegan Basin, Iranian Journal of Eco Hydrology, 2 (4): 445–454. (In Persian).
Gharechaee H, Nazari Samani A, Khalighi Sh, Fathabadi A, Khaledali A. 2020. Assessing the factors affecting the salinity risk of groundwater using data mining and statistical methods in arid and semi-arid regions, Degradation and Rehabilitation of Natural Land, 1(1): 45–60. (In Persian).
Govindan K, Kaliyan M, Kannan D, Haq A. 2014. Barriers analysis for green supply chain management implementation in Indian industries using analytic hierarchy process. Int. J. Prod. Econ. 147 (2): 555–568.
Hastie T, Tibshirani R, Friedman JH, Friedman JH. 2009. The elements of statistical learning: data mining, inference, and prediction, 24 (2): 1–758.
Hu B, Zhou J, Wang J, Chen Z, Wang D, Xu S. 2009. Risk assessment of land subsidence at Tianjin coastal area in China. Environmental Earth Sciences, 59(2): 269–276.
Kaly, Ursula, Lino Briguglio, Helena McLeod, Susana Schmall, Craig Pratt, Reginald Pal. Environmental Vulnerability Index (EVI) to summarise national environmental vulnerability profiles. SOPAC, 1999, 1(1): 45–60
Khosravi K, Pourghasemi H, Chapi K, Bahri M. 2016. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon’s entropy, statistical index, and weighting factor models. Environmental Monitoring and Assessment, 188(12): 1–21.
Liao X, Li W, Hou J. 2013. Application of GIS based ecological vulnerability evaluation in environmental impact assessment of master plan of coal mining area, Procedia Environmental Sciences, pp. 271–276.
Linstone HA, Turoff M. 1975. The Delphi survey: Method techniques and applications. Reading: Addison-Wesley, 21 (1): 3–12.
Liu D, Cao Ch, Dubovyk O, Tian R, Chen W, Zhuang Q, Zhao Y, Menz G. 2017. Using fuzzy analytic hierarchy process for Spatio-Temporal Analysis of eco environmental vulnerability change during 1990-2010 in Sanjiangyuan region, Ecological Indicators, pp. 612–625.
Lucà F, Conforti M, Robustelli G. 2011. Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. Geomorphology, 134(3–4): 297–308.
Lyu H, Shen M, Zhou S, Yang J. 2020. Risk assessment of mega-city infrastructures related to land subsidence using improved trapezoidal FAHP. Science of the Total Environment, 717 (2): 135–310.‏
Lyu HM, Shen SL, Zhou A, Yang J. 2020. Risk assessment of mega-city infrastructures related to land subsidence using improved trapezoidal FAHP. Science of the Total Environment, 717:135–310.
Nasrollahi M, Khosravi H, Moghaddamnia A, Malekian A, Shahid S. 2018. Assessment of drought risk index using drought hazard and vulnerability indices. Arabian Journal of Geosciences, 11(20): 1–12.
National Research Council. 1989. Irrigation-induced water quality problems. National Academies Press.
Oh HJ, Lee S. 2011. Integration of ground subsidence hazard maps of abandoned coal mines in Samcheok, Korea. International Journal of Coal Geology, 86(1): 58–72.
Ozdemir A, Altural T. 2013. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey, Journal of Asian Earth Sciences, 64 (3):180–197.
Pradhan B, Jebur M. 2017. Spatial prediction of landslide-prone areas through k-nearest neighbor algorithm and logistic regression model using high resolution airborne laser scanning data. In: B. Pradhan, ed., Laser scanning applications in landslide assessment. Cham, Switzerland: Springer International Publishing, pp. 151–165.
Saaty TL. 1980. Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1): 83–98.
Sahoo S, Dhar A, Kar A. 2016. Environmental vulnerability assessment using grey analytic hierarchy process based model, Environmental Impact Assessment Review, pp. 145–154.
Srdjevic Z, Kolarov V, Srdjevic B. 2007. Finding the best location for pumping stations in the Galovica drainage area of Serbia: The AHP approach for sustainable development. Bus. Strateg. Environ, 16 (7): 502–511.
Taghi Zadeh MM, Halabian AH, Ali Por M, Kiumarsi H. 2017. Identifying and zoning of groundwater salinity using GIS case study: Namdan plain of Eghlid county. Geography and Environmental Planning, 28(3): 133–146.
Varnes DJ. 1984. Landslide hazard zonation: A review of principles and practice, 3(1): 50–65.
Wang L, Zhang P, Tan S, Zhao X, Cheng D, Wei W., ... Pan X. 2013. Assessment of urban air quality in China using air pollution indices (APIs). Journal of the Air & Waste Management Association, 63(2): 170–178.