پایش دگرگونی رطوبت سطحی خاک با تحلیل گروه زمانی داده های لندست 8 در آبخیز گاودره کردستان

نوع مقاله : پژوهشی

نویسندگان

1 استادیار پژوهشی، بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کردستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، سنندج، ایران

2 استادیار پژوهشی، گروه هیدرولوژی، پژوهشکده ی حفاظت خاک و آبخیزداری، تهران، ایران

چکیده

اطلاع دقیق از اندازه‌ی رطوبت و افت‌وخیز‌های آن ممکن است راه‌کاری مناسب برای تهیه‌کردن نقشه‌های رطوبت لایه‌ی سطحی خاک، پیش‌بینی روی‌داد طوفان‌های خاک و ریزگردها، سیل، خشک‌سالی و دیگر پدیده‌های اقلیمی، آگاهی از فصل چرای دام در مرتع، و زمان کشت و آبیاری گیاهان باشد. در این پژوهش برای برآوردکردن و آگاهی یافتن از رطوبت خاک، شاخص عمودی رطوبت خاک به‌دست‌آمده از تصویرهای لندست 8 به‌کار برده‌شد. با داده‌های میدانی ارتباط میان این شاخص و رطوبت خاک آشکار شد. پس از ویرایش پرتوسنجی و هندسی تصویرها و بهنجار‌سازی داده‌های میدانی، تصویرهای ماهواره‌یی پردازش شد و شاخص عمودی رطوبت خاک به‌دست‌ آمد. داده‌های میدانی و اندازه‌های شاخص در زمان‌های مختلف تحلیل وایازی ساده شد. درستی نقشه‌های تولیدشده با شاخص‌های آماری ضریب تبیین، جذر میانگین مربع‌های خطا، میانگین خطا، و ضریب کارآیی نش-ساتکلیف بررسی شد. نتایج نشان داد که اندازه‌های برآوردشده با شاخص عمودی رطوبت خاک وابستگی کامل به فصل و وضعیت پوشش گیاهی دارد، و در فصل رویش و زیادبودن ضریب سبزینگی دقت برآورد زیاد، و در فصل‌ خواب پوشش گیاهی همبستگی ضعیف و متوسطی با داده‌های میدانی دارد. میانگین ضریب تبیین در همه‌ی زمان‌های نمونه‌برداری حدود 0/65 بود. از یافته‌های این پژوهش می‌توان نتیجه گرفت که این شاخص را ممکن است برای پاییدن رطوبت خاک در منطقه‌های با پوشش گیاهی مناسب، برنامه‌ریزی آبیاری در عرصه‌های کشاورزی، و آغاز و پایان فصل چرای دام در مرتع به‌کار برد.

کلیدواژه‌ها


عنوان مقاله [English]

Monitoring Changes in Soil Surface Moisture by Analyzing the Time Series of Landsat 8 Data in Gavdare Watershed, Kurdistan Province

نویسندگان [English]

  • Salahudin Zahedi 1
  • Bagher Ghermezcheshmeh 2
1 Assistant Professor of Kurdistan Agricultural and natural Resources research and Education Center, AREEO, Sanandaj, Iran
2 Assistant Professor, Soil Conservation and Watershed Management Research Institute, AREEO, Tehran, Iran
چکیده [English]

Accurate information about the amount of moisture and its fluctuations can provide a suitable solution for preparing soil surface moisture maps, predicting the occurrence of soil storms and dust, forecasting floods, droughts, and other climatic phenomena, determining the irrigation time table and the grazing season. In this study, the Perpendicular Soil Moisture Index (PSMI) extracted from Landsat 8 images was used to estimate and determine surface soil moisture. Using field data, the relationship between this index and soil moisture was determined. After radiometric and geometric corrections of images and normalization of field data, processing of satellite images and extraction of PSMI index were performed. Simple regression analysis between field data and index values ​​was performed at different times. Then, the accuracy of produced maps was determined with statistical indicators including coefficient of correlation (R2), root mean square error (RMSE), mean absolute error (MAE) and Nash Sutcliffe efficiency coefficient. The results showed that estimated values with the PSMI index are completely dependent on the season and vegetation status. In the growing season and with high greenness coefficient, the accuracy of estimation was high. In dormant seasons, vegetation had a weak and moderate correlation with field data. The average coefficient of R2 in all sampling times was about 0.65. From the findings of this study, it can be concluded that this index can be used to monitor soil moisture in areas with suitable vegetation, irrigation planning in agricultural areas, and the beginning and end of the livestock grazing season.

کلیدواژه‌ها [English]

  • Landsat8
  • PSMI
  • surface soil moisture
Box GEP, Cox D. 1964. An analysis of transformations, Journal of the Royal Statistical Society. Series B. 26: 211–252.
Fang B, Lakshmi V. 2014. Soil moisture at watershed scale: Remote sensing techniques. Journal of Hydrology, 516: 258–272.
Gonick L, Smith W. 1993. The cartoon guide to statistics. 1st ed. Harper Perennial Press, 233 p.
Hyndman R, Koehler J, Anne B. 2006. Another look at measures of forecast accuracy. International Journal of Forecasting, 22 (4): 679–688.
Huete AR, Post DF, Jackson RD. 1984. Soil spectral effects and 4-space vegetation discrimination. Journal of Remote Sensing of Environment, 15:155–165.
Koohbanani H, Yazdani M. 2018. Mapping the moisture of surface soil using Landsat 8 imagery (Case study: Suburb of Semnan City). Geography and Sustainability of Environment, 8 (3):51–63. (In Persian).
Machado S, Bynum ED, Archer TL, Lascano RJ, Wilson LT, Borodvsky L, Scarra E, Nesmith DM, Xu W. 2000. Spatial and temporal variability of corn grain yield: Site specific relationships to biotic and abiotic factors. Crop Sciences, 42 (5): 1564–1576.
McCoy RM. 2005. Field methods in remote sensing. The Guildford Press, 159 p.
Patel NR, Anapashsha R, Kumar S, Saha S K, Dadhwa V.K. 2009. Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status. International. Journal of Remote Sensing, 30(1): 23–39.
Peng W, Wang J, Zhang J, Zhang Y. 2020. Soil moisture estimation in the transition zone from the Chengdu Plain region to the Longmen Mountains by field measurements and Landsat 8 OLI/TIRS-derived indices. Arabian Journal of Geosciences, 13)168(: 1–13.
Robert Gilmore Pontius JR, Olufunmilayo T, Hao C. 2008. Components of information for multiple resolution comparison between maps that share a real variable. Environmental and Ecological Statistics, 15 (2): 111–142.
Rahimzadeh BP, Berg AA, Champagne C, Omasa K. 2013. Estimation of soil moisture using optical/thermal infrared remote sensing in the Canadian Prairies. ISPRS Journal of Photogrammetry and Remote Sensing, 83: 94–103.
Rouse JW, Haas RH, Schell JA, Deering DW, Harlan JC. 1974. Monitoring the vernal advancement and retrogradation (greenwave effect) of natalral vegetation. NASA/GSFC Type III Final Report. https://ntrs.nasa.gov/api/citations/19750020419/ downloads/
19750020419.pdf
Schaefli B, Gupta HV. 2007. Do Nash values have values? Hydrological Processes, 21 (15): 2075–2080.
Sedaghat M, Nazaripour H. 2020. Monitoring variability of soil moisture in Hour-al-Azim Wetland and its relation to dust storms in southwest Iran. Journal of Geographical Data (SEPEHR), 29(114): 133–145. (In Persian).
Shafian S, Mass JM. 2015. Index of soil moisture using raw landsat image digital count data in texas high plains. Remote sensing, 7 (3): 2352–2372.
Stewart CM, McBratney AB, Skerritt JH. 2002. Site specific durum wheat quality and its relationship to soil properties in a singled in northern south wales. Precision Agriculture, 3(2):155–168.
USGS.2016. Landsat Levels of Processing, https://www.usgs.gov/landsat-missions/landsat-levels-processing.
Department of watershed management- Kurdistan Jihad Agriculture Organization. 1997. Report of Comprehensive Watershed Management Studies of Gheshlagh Dam Watershed. 263 p. (In Persian).