تعیین مناسب‌‌ترین ضریب گامای فازی و پهنه‌بندی حساسیت زمین‌لغزش در آبخیز قزل‌اوزن

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران.

2 دانشیار پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات آموزش و ترویج کشاورزی، تهران، ایران

چکیده

زمین‌‌لغزش یکی از نوع‌های مخرّب فرسایش در دامنه‌‌ها است که موجب زیان‌های مالی و جانی فراوانی می‌‌شود. شناسایی عامل‌های مؤثر در بروز زمین‌‌لغزش و تهیه‌ی نقشه‌ی پهنه‌‌بندی حساسیت آن، یکی از ابزارهای پایه‌یی برای مدیریت‌کردن و کاستن از زیان‌های احتمالی است. هدف این پژوهش تعیین مناسب‌‌ترین ضریب گامای فازی و پهنه‌بندی حسّاسیت زمین‌لغزش در آبخیز قزل‌اوزن استان قزوین است. ابتدا نقشه‌ی رقومی عامل‌های مؤثر شامل سنگ‌‌شناسی، فاصله از گسل، شتاب زمین‌‌لرزه، درجه‌ی شیب، جهت شیب، بلندی، کاربری زمین، فاصله از جاده، فاصله از آب‌راه، اندازه‌ی بارش، بیشینه‌ی بارش روزانه و نقشه‌ی رقومی پراکنش زمین‌‌لغزش‌‌ها تهیه شد. اندازه‌های نسبت فراوانی و عضویت فازی برای هر رده‌ از نقشه‌های عامل‌های مؤثر محاسبه شد، و نقشه‌ی حسّاسیت زمین‌لغزش با اندازه‌های گوناگون گامای فازی تهیه و رده‌‌بندی شد. به‌طورکلی در این حوزه 17 زمین‌لغزش با مجموع مساحت 213 هکتار ثبت شد که 70 % آن‌ها برای پهنه‌بندی (11 زمین‌لغزش با مساحت 153هکتار) و 30 % مانده (6 زمین‌لغزش با مساحت 60 هکتار) برای ارزیابی دقت نقشه‌های خطر به‌کار برده‌شد. نتیجه‌ی ارزیابی نشان داد که ‌بیش‌ترین اندازه‌ی شاخص مجموع پسندیدگی (2/37) در عمل‌گر فازی با گامای 0/96 است. بنابراین دقت این مدل از دیگر اندازه‌های گاما ‌بیش‌تر است. نتیجه‌ی این پژوهش کاربرد مهمّی در فرآیند آمایش کاربری‌‌های زمین و مدیریت منطقه‌های حساس به زمین‌لغزش خواهد داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Determining the Best Fuzzy Gamma Coefficient and Landslide Hazard Zoning in Qezelozan Watershed

نویسندگان [English]

  • Jamal Mosaffaie 1
  • Amin Salehpour Jam 2
1 Associate Professor,, Soil Conservation and Watershed Management Research Institute (SCWMRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.
2 Associate Professor,, Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

Landslide is one of the most destructive types of erosion on slopes, which causes a lot of financial and human losses. Identifying the effective factors in landslide occurrence and preparing a landslide hazard zonation map is one of the basic tools to manage and reduce potential damage. The purpose of this study is to evaluate the efficiency of fuzzy gamma operators and landslide hazard zonation in the Qezelozan watershed of Qazvin province. The landslide inventory map and also 11 effective factors including slope, slope direction, altitude, land use, lithology, distance to road, distance to stream, distance to fault, earthquake acceleration, precipitation, and maximum daily precipitation were first prepared. Then, the values of frequency ratio and fuzzy membership were calculated for each class of effective factors. In the next step, the landslide susceptibility maps were produced using fuzzy gamma operators. A total of 17 landslides were identified, 70% (11 landslides with an area of 153 hectares) of which were used to model and 30% (6 landslides with an area of 60 hectares) of which were used to evaluate the results of the models. The evaluation process using Density Ratio and Sum of Quality indices showed that the gamma of 0.96 has higher accuracy than other gamma values in the study area. The landslide hazard zoning map of the superior model will be useful in land use planning and reducing the landslide risk of the region.

کلیدواژه‌ها [English]

  • Frequency ratio
  • fuzzy logic
  • hazard zonation
  • landslide susceptibility
  • Qezelozan watershed
Abay A, Barbieri G, Woldearegay K. 2019. GIS-based landslide susceptibility evaluation using analytical hierarchy process (AHP) approach: The case of Tarmaberdistrict, Ethiopia. Momona Ethiopian Journal of Science, 11 (1): 14–36.
Althuwaynee OFB, Pradhan HJ, Park Lee JH. 2014. A novel ensemble decision tree-based Chi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides, 11 (6):1063–1078.
Armin M, Mosaffaie J, Ghorbannia Kheybari V, Khairi A. 2019. Landslide zoning and its risk management plan in Kohgiluyeh and Boyer-Ahmad province using Haeri-Sami model. Quantitative Geomorphological Research, 7 (4): 176–196. (In Persian).
Berberian M, Ghorashi M, Arzhangravesh B, Mohajer A. 1993. Seismotectonic and earthquake-fault hazard investigations in the great Qazvin region. Geologic Survey of Iran, Report, No. 61. pp. 152–197.
Boroumandi M, Khamehchiyan M, Nikoudel MR. 2015. Using of analytic hierarchy process for landslide hazard zonation in Zanjan province, Iran. In: Engineering geology for society and territory - volume 2, lollino g, giordan d, crosta gb, et al. (eds). Springer International Publishing, Cham. pp. 951–955.
Bui DT, Pradhan B, Revhaug I, Nguyen DB, Pham HV, Bui QN. 2015. A novel hybrid evidential belief function-based fuzzy logic model in spatial prediction of rainfall-induced shallow landslides in the Lang Son city area (Vietnam). Geomatics, Natural Hazards and Risk, 6 (3): 243–271.
Caniani D, Pascale S, Sado F, Sole A. 2008. Neural networks and landslide susceptibility: A case study of the urban area of Potenza. Natural Hazards, 45 (1): 55–72.
Catani F, Lagomarsino D, Segoni S, Tofani V. 2013. Landslide susceptibility estimation by random forests technique: Sensitivity and scaling issues. Natural Hazards Earth System Science, No.13, pp. 2815–2831.
Çellek S. 2020. Effect of the slope angle and its classification on landslide. Natural Hazards Earth System Science. Discuss, pp. 1–23.
Chen W, Li X, Wang Y, Chen G, Liu S. 2014. Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges. China. Remote Sensing of Environment No.152, pp. 291–301.
Conforti M, Pascale S, Robustelli G, Sdao F. 2014. Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River Catchment (northern Calabria, Italy). Catena, No.113, pp. 236–250.
Dou J, Yamagishi H, Pourghasemi HR,Yunus AP, Song X, Xu Y, Zhu Z. 2015. An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Natural Hazards, 78 (3): 1749–1776.
Gee MD. 1992. Classification of landslides hazard zonation methods and a test of predictive capability. In: Bell, Davi, H. (eds.), Proceedings 6th International Symposium on Landslide, pp. 48–56.
Hasekio gullari GD, Ercanoglu M. 2012. A new approach to use AHP in landslide susceptibility mapping: A case study at Yenice (Karabuk, NW Turkey). Natural Hazards, 63 (2): 1157–1179.
He H, Hu D, Sun Q, Zhe L, Liu Y. 2019. A landslide susceptibility assessment method based on GIS technology and an AHP-weighted information content method: A case study of Southern Anhui, China. ISPRS International Journal of Geo-Information, 8 (6): 266. https://doi.org/10.3390/ijgi8060266
Hinotoli Sema V, Balamurugan G, Ramesh V. 2017. Fuzzy gamma operator model for preparing landslide susceptibility zonation mapping in parts of Kohima Town, Nagaland, India. Model. Modeling Earth Systems and Environment, 3 (8): 499–514.
Joybari J, Kavian A, Mosaffaei J. 2016. The effect of precipitation characteristics on spatial and temporal variations of Tavan landslide movement. Journal of Geography and Environmental Hazards, 4(4): 75–86. (In Persian).
Joybari J, Kavian AA, Mosaffaie J. 2017. Effect of land use on landslide movement in the Tavan district, Qazvin. Watershed Management Researches Journal, 30(3): 29–39. (In Persian).
Karimi Sangchini E, Emami SN, Tahmasebipour N, Pourghasemi HR, Naghibi SA, Arami SA, Pradhan B. 2016. Assessment and comparison of combined bivariate and AHP models with logistic regression for landslide susceptibility mapping in the Chaharma-hal-e-Bakhtiari Province, Iran. Arabian Journal of Geosciences, 9 (1): 1–15.
Kumar R, Anbalagan R. 2016. Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri Reservoir Rim Region, Uttarakhand. Journal of the Geological Society of India, 87 (3): 271–286.
Lee S. 2007. Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Environmental Geology, 52 (4): 615–623.
Morady HR, Pourghasemi HR, Mohammdi M, Mahdavifar MR. 2010. Landslide hazard zoning using Gamma fuzzy operator, with a case study of Haraz watershed. Environmental Sciences, 7 (4): 129–142. (In Persian).
Mosaffaie J, Salehpour Jam A, Sarfaraz F, Shadfar S. 2020. Evaluation of landslide susceptibility zonation applying fuzzy Gamma operators in Taleghanroud Watershed of Qazvin Province. Geography and Sustainability of Environment, 10(3): 71–90. (In Persian).
Mosaffaie J, Ownegh M. 2011. Landslide hazard zonation by AHP and regression model, Case study: Alamout Watershed. Watershed Engineering and Management, 3 (3): 149–158. (In Persian).
Mosaffaie J, Ekhtesasi MR, Salehpour Jam A. 2018. Comparison of the existing and RS geological maps (Case study: Vartavan Catchment). Journal of Range and Watershed Management, 70 (4): 1005–1013. (In Persian).
Mosaffaie J, Ownegh M. 2009. GIS an efficient tool for identifying policies and programs of landslide hazard management. Journal of Agricultural Sciences and Natural Resources, 16 (2) 303–314. (In Persian).
Mosaffaie J, Ownegh M, Mesdaghi M, Shariat Jafari M. 2009. Comparing the efficiency of statistical and empirical landslide hazard zonation models in Alamout watershed. Journal of Water and Soil Conservation, 16 (4): 43–61. (In Persian).
Mosaffaie J, Salehpour Jam A, Tabatabaei MR. 2017. Comparing the efficiency of sediment rating curve and ANN models in estimating River Bed-load. Geography and Sustainability of Environment, 7 (3): 33–44. (In Persian).
Motevalli S, Esmaili R. 2013. Landslide hazard zoning using gamma fuzzy operator (A case study: Taleghan Watershed). Environmental Erosion Researches. 2 (8): 1–20. (In Persian).
Motkan AA, Samia J, Pourali SH, Safaee M. 2009. Fuzzy logic models and RS for landslide hazard zonation in Lajim watershed. Journal of Geotechnical Geology, 5 (4): 318–325. (In Persian).
Mousavi Bafrouei SH, Mirzaei N, Shabani E, Eskandari-Ghadi M. 2014. Seismic hazard zoning in Iran and estimating peak ground acceleration in provincial capitals. Journal of Earth and Space Physics, 40 (4): 15–38. (In Persian).
Nguyen TTN, Liu CC. 2019. A new approach using ahp to generate landslide susceptibility maps in the Chen-yu-lan Watershed, Taiwan. Sensors, 19 (3): 1–18.
Pourghasemi HR, Moradi HR, Fatemi Aghda SM. 2013. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Natural Hazards, 69 (1): 749–779.
Pradhan B, Lee S. 2010. Landslide susceptibility assessment and factor elect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Environ. Model. Softw, 25 (6): 747–759.
Rashvand S, Mosaffaie J. 2013. Investigation of human population pressure on environment, case study: Masile Basin of Qazvin. Human and Environment, 11(25): 41–55. (In Persian).
Rashvand S, Mosaffaie J, Darvish M, Rafiei Emam A. 2013. Investigation on potential of desertification in terms of decay of vegetation. Case study: rude shoor, Qazvin. Iranian Journal of Range and Desert Research, 20 (1): 38–49. (In Persian).
Safari A, Rayati Shavvazi M, Jan Ahmadi M, Shirzad Malayeri I. 2015. Landslide hazard zonation using the Frequency ratio model and fuzzy logic (Case study: Central Section of Jam Township). Journal of National Geography, 8(30): 15–30. (In Persian).
Salehpour Jam A,  Mosaffaie J, Sarfaraz F, Shadfar S, Akhtari R. 2021. GIS-based landslide susceptibility mapping using hybrid MCDM models. Natural Hazards, 108 (1): 1025–1046.
Salehpour Jam A, Peyrowan H, Tabatabaei MR, Sarreshtehdari A, Mosaffaie J. 2019. An assessment of the land degradation potential using the TOPSIS method (Case study: Rangelands overlooking the city of Eshtehard, the province of Alborz). Watershed Management Journal, 32 (4): 72–93. (In Persian).
Salehpour Jam A, Mosaffaie J, Tabatabaei MR. 2019. Investigation of pedological criterion affecting on desertification in alluvial fans using nonparametric tests, case study: South of Rude-Shoor watershed area. Journal of Spatial Analysis Environmental Hazards, 6 (3): 1–14. (In Persian).
Salehpour Jam A, Tabatabaei MR, Sarreshtehdari A, Mosaffaie J. 2019. Investigation of drought characteristics in north-west of Iran using Deciles Index. Journal of Watershed Engineering and Management, 10 (4): 552–563. (In Persian).
Sarfaraz F, Mosaffaie J, Akhtari R, Salehpour Jam A. 2021. Evaluation of the efficiency of Haeri-Audio experimental model and bivariate statistical in landslide risk zoning (Case study: Qazvin Province). Natural Geography, 14 (52): 99–118. (In Persian).
Shariat Jafari M. 2008. Landslide specific risk assessment on part of southern Alborz, Iran. Engineering Geology, 1 (3): 1–14. (In Persian).
Shoaei Z. 2016. Landslides (Recognition, Assessment and Mitigation), Geological Survey and Mineral Exploration of Iran, 617 p. (In Persian).
Stanley T, Kirschbaum DB. 2017. A heuristic approach to global landslide susceptibility mapping. Natural Hazards, 87 (1): 145–164.
Tangestani MH. 2004. Landslide susceptibility mapping using the fuzzy gamma approach in a GIS, Kakan Catchment area, southwest Iran. Australian Journal of Earth Sciences, 51 (3): 439–450.
Vakhshoori V, Zare M. 2016. Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods. Geomatics, Natural Hazards and Risk, 7 (5): 1731–1752.
Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T. 2011. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85 (3): 274–287.
Yoshimatsu H, Abe S. 2006. A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method. Landslides, 3 (2) 149–158.
Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM. 2015. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13 (5): 839–856.