Angelaki A, Sakellariou-Makrantonaki M, Tzimopoulos C. 2013. The oretical and experimental research of cumulative infiltration. Transport in Porous Media, 100(2): 247–257.
Angelaki A, Singh Nain S, Singh V, Sihag P. 2018. Estimation of models for cumulative infiltration of soil using machine learning methods. ISH Journal of Hydraulic Engineering, pp. 1–8.
Breiman L, Cutler A. 2004. RF tools-for predicting and understanding data, Interface'04 Workshop. pp. 1–62.
Breiman L. 2001. Random forests. Machine Learning, 45(1): 5–32.
Cardwell A. 2017. The effect of land use on infiltration in Taita Hills, Kenya. Master’s thesis in Geography, Faculty of Science, Department of Geosciences and Geography, university of Helsinki, 88 p.
Cortes C, Vapnik V. 1995. Support-vector network. Machine Learning, 20(3): 273–297.
Díaz-Álvarez A, Serradilla F, Naranjo JE, Anaya JJ, Jiménez F. 2014. Modeling the driving behavior of electric vehicles using smartphones and neural networks. IEEE Intelligent Transportation Systems Magazine, 6(3): 44–53.
Dibike YB, Solomatine D, Abbott MB. 1999. The encapsulation of numerical hydraulic models in artificial neural network. Journal of Hydraulic Research, 37(2): 147–161.
Fischer C, Tischer J, Roscher C,
Eisenhauer N,
Ravenek J,
Gleixner G,
Attinger S,
Jensen B,
Kroon H,
Mommer L,
Scheu S,
Hildebrandt A. 2015. Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties. Plant Soil, 397: 1–16.
Ghorbani MA, Dehghani R. 2016. Application of bayesian neural networks, support vector machines and gene expression programming analysis of rainfall - runoff monthly. Journal of Irrigation Sciences and Engineering, 39(2): 125–138 (In Persian).
Gomez H, Kavzoglu T, Mather P. 2002. Artificial neural network application in landslide hazard zonation in the Venezuelan Andes. Abstracts of 15th International Conference on Geomorphology, Tokyo, Japan, pp. 23–28.
Hassaanvand S, Sepahvand A, Tarnian F, Sihak P. 2021. Infiltration change assessment in different vegetation types (Case study: Aleshtar watershed, Lorestan provience). Range, 15(3): 477–493.
Hsu SM, NI CF, Hung PF. 2002. Assessment of three infiltration formulas based on model fitting and Richards equation. Journal of Hydrology Engineering, 7(5): 373–379.
Lallahema S, Maniaa J, Hania A, Najjarb Y. 2005. On the use of neural networks to evaluate groundwater levels in fractured media. Journal of Hydrology, 307(1): 92–111.
Mazaheri MR, Mahmoodabadi M. 2012. Study on infiltration rate based on primary particle size distribution data in arid and semiarid region soils. Arabian Journal of Geoscience, 5: 1039–1046.
Mehdi Nasab M, tavousi T, tavousi T, Negaresh H. 2015. Modeling of rainfall – runoff Kashkan River Catchment based on statistical models, Geography and Environmental Planning, 26(2): 67–84.
Osuji G, Okon M, Chukwuma M, Nwarie I. 2010. Infiltration characteristics of soils under se-lected land use practices in Owerri, Southeastern Nigeria. World Journal of Agricultural Sciences, 6: 322–326.
Sepahvand A, Golkarian A, Billa L, Wang K, Rezaie F, Panahi S, Samadianfard S, Khosravi Kh. (2022). Evaluation of deep machine learning‑based models of soil cumulative infiltration, Earth Science Informatics, 15,1861–1877.
Sepahvand A, Sihag P, Singh B, Zand M. 2018. Comparative evaluation of infiltration models. Journal of Civil Engineering, 22(2): 4173–4184.
Sepahvand A, Singh B, Ghobadi M, Sihag P. 2021. Estimation of infiltration rate using data-driven models, Arabian Journal of Geosciences, 14(1): 1-11.
Shafie Amr H, Mazoghi E, Hasan G, Shehata E, Taha A, Mohd R. 2011. Artificial neural network technique for rainfall forecasting applied to Alexandria. Egypt, International Journal of the Physical Sciences, 6(6): 1306–1316.
Shiri J, Keshavarzi A, Kisi O, Iturraran-Viveros U, Bagherzadeh A, Mousavi R, Karimi S. 2017. Modeling soil cation exchange capacity using soil parameters: Assessing the heuristic models. Comput. Electron. Agric., 135(3): 242–251.
Sihag P, Singh B, Sepahvand A, Mehdipour V. 2018. Modeling the infiltration process with soft computing techniques. ISH Journal of Hydraulic Engineering, 26(1): 1–15.
Sihag P, Singh VP, Angelaki A, Kumar V, Sepahvand A, Golia E. 2019. Modelling of infiltration using artificial intelligence techniques in semi-arid Iran. Hydrological Sciences Journal, 64(13):1647–1658.
Singh B, Sihag P, Singh K, Kumar S. 2021. Estimation of trapping efficiency of vortex tube silt ejector. International Journal of River Basin Management, 19(1): 1–38.
Singh B, Sihag P, Singh K. 2018. Comparison of infiltration models in NIT Kurukshetra campus. Applied Water Science, 8(2): 63–70.
Soleimani L, Haghizadeh A,
Zeinivand H. 2016. The determination of the best models to estimate the infiltration in various land uses for optimum management of watersheds. Journal of Watershed Management Research, 7(13): 33–41 (In Persian).
Tokar AS, Markus M. 2000. Precipitation-runoff modeling using artificial neural networks and conceptual models. Journal of Hydrology Engineering, 5(2): 156–161.
Yimer F, Messing I, Ledin S, Abdelkadir A. 2008. Effects of different land use types on infiltration capacity in a catchment in the highlands of Ethiopia. Soil use and management, 24: 344–349.