ارزیابی کارایی شبکه و گره‌های زهکشی سطحی به‌منظور مهار رواناب شهری با استفاده از نرم‌افزار SWMM در غرب منطقه شش تهران

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مهندسی آبخیز، دانشکده ی منابع طبیعی و علوم زمین، دانشگاه کاشان

2 استاد دانشکده ی منابع طبیعی و علوم زمین، دانشگاه کاشان

3 دانشیار دانشکده ی منابع طبیعی و علوم زمین، دانشگاه کاشان

چکیده

مقدمه و هدف
شبیه‌سازی در آبخیزهای شهری با توجه به مشکلات مدیریت منابع آب از جمله سیلاب و مهار آلودگی اهمیت یافته‌اند. بنابراین، در سال‌های اخیر رویکرد مهندسان به سمت و سوی نرم‌افزار‌های کامپیوتری برآورد و شبیه‌سازی رواناب است. تاکنون نرم‌افزار‌های بارش-رواناب فراوانی با قابلیت‌ها و پیچیدگی‌های مختلفی برای پیش‌بینی سیلاب توسعه‌یافته و به‌کار برده شده‌اند. رویکرد این پژوهش شبیه‌سازی رواناب سطحی و مشخص‌کردن گره‌های سیل‌گیر و بحرانی تحت تأثیر تغییر اقلیم و تعیین کارایی شبکه‌ی‌ زهکشی سطحی غرب منطقه شش شهرداری تهران است.
مواد و روش
این پژوهش شامل دو بخش آب‌شناسی و آب‌جریان (هیدرولیکی) است. در بخش آب‌شناسی پس از محاسبه‌ی زمان تمرکز، به‌منظور محاسبه‌ی شدت بارش طرح و برای تحلیل بارش‌های حداکثری برای تداوم‌های مختلف دوره‌ی پایه (2020-1980)، دوره‌ی آینده نزدیک (2050-2021) و آینده‌ی دور (2100-2051) و تهیه‌ی منحنی IDF در زمان و تداوم‌های مختلف براساس سناریوی RCP2.6 و  RCP8.5از رابطه‌ی آبخضر- قهرمان استفاده شد. در بخش آب‌جریان ارزیابی شبکه‌ی ‌زهکشی و گره‌های سیل‌گیر در بخش غربی منطقه‌ی شش شهرداری تهران در دوره‌ی پایه (2020-1980) و تحت تأثیر تغییر اقلیم (2050-2021)، (2100-2051) در سناریوهای RCP 2.6 و RCP8.5 برای دوره‌ی بازگشت 25 و 50 ساله انجام شد.
نتایج و بحث
نتایج این پژوهش نشان داد که اندازه‌های شدت بارش در تداوم‌های بارش و دوره‌‌های بازگشت‌ مختلف هر سه سناریو در مقایسه با منحنی شدت‌- مدت فراوانی دوره‌ی پایه افزایش داشت. همچنین بیشترین شدت بارش در پایه‌ی زمانی کوتاه مدت افزایش یافت و با گذشت زمان از شدت بارش حداکثری کاسته شد. منحنی‌های IDF تحت تأثیر بارش‌های کوتاه مدت بود. نتایج به‌دست آمده از واسنجی مدل نشان داد که شبیه‌سازی آبدهی در پنج رخداد‌ بررسی‌شده‌ی بارش‌، بین داده‌های مشاهده‌شده و شبیه‌سازی شده انطباق خوبی است. نتایج تحلیل حساسیت نشان داد که درصد مناطق نفوذناپذیر بیشترین تأثیر را بر تغییر آبدهی اوج خروجی داشتند. نتایج ارزیابی گره‌های سیل‌گیر نشان داد تعداد گره‌های سیل‌گیر در دوره‌ی پایه (2020-1980) و تحت تأثیر تغییر اقلیم سناریوی RCP2.6 وRCP8.5 (2021-2050) برای دوره‌ی بازگشت 25 ساله به‌ترتیب 7، 10 و 12 بود. تعداد گره‌های سیل‌گیر در دوره‌ی پایه (2020-1980) و تحت تأثیر تغییر اقلیم سناریوی RCP2.6 و RCP8.5  (2051-2100) برای دوره‌ی بازگشت 50 ساله نیز به‌ترتیب 9، 14 و 17 بود.
نتیجه‌گیری و پیشنهادها
نتایج این پژوهش نشان داد که تعداد گره‌های سیل‌گیر آبخیز در دوره‌ی بازگشت 25 ساله در مقایسه با دوره‌ی بازگشت50 ساله در هر دوره افزایش داشته است. در منطقه‌ی پژوهش با توجه به شناسایی گره‌های بحرانی می‌توان با اعمال روش‌های نوین مهار رواناب‌ شهری مانند ایجاد سطوح نفوذپذیر، جوی‌باغچه، چاهک‌های جذبی، آبگیرها و حوضچه‌های ذخیره‌، رواناب را در منشا مهار کرد تا اندازه‌ی حجم و آبدهی اوج در پایین دست کاهش یابد و احتمال رخداد آبگرفتگی و بالازدگی به حداقل برسد. از آنجایی که درصد مناطق نفوذناپذیر در منطقه‌ی بررسی‌شده زیاد است از این رو توصیه می‌شود در مواقع بارندگی در محل گره‌های فوق بحرانی ابعاد کانال‌ها به‌منظور عبور سیلاب افزایش پیدا کند و توانایی هدایت رواناب بیش‌تری داشته باشد و اندازه‌ی آبدهی اوج رواناب کاهش یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the Efficiency of the Surface Drainage Network and Nodes in Order to Contain Urban Runoff Using SWMM Software in the West of Tehran's Sixth District

نویسندگان [English]

  • Yazdan Yarahmadi 1
  • Reza Ghazavi 2
  • Hoda Ghasemiyeh 3
1 Ph.D., Student in Watershed Science and Engineering, Kashan University
2 Professor, Faculty of Natural Resources and Earth Sciences, Kashan University
3 Associate Professor, Faculty of Natural Resources and Earth Sciences, Kashan University
چکیده [English]

Introduction and Objective
Urban watersheds have become important due to the problems related to water resources management, including floods and pollution control. Therefore, the approach of engineers in recent years is toward computer software for estimating and simulating runoff. So far, many rainfall-runoff software with different capabilities and complexity have been developed and used for flood forecasting. The approach of the current research is to simulate the surface runoff and to identify the flood and critical nodes under the influence of climate change and to determine the efficiency of the surface drainage network in the west of six districts of Tehran municipality.
Materials and Methods
This research includes two parts of hydrology and water flow. In the hydrological department, after calculating the concentration time, in order to extract the rainfall intensity of the plan and to analyze the maximum rainfall for different durations of the base period (1980-2020), the near future period (2021-2050) and the far future (2051-2100) and preparing the IDF curve at different times and durations, based on the RCP2.6 and RCP8.5 scenarios, the Abkhezer-Qahraman method was used. In the water flow section, the assessment of the drainage network and flood control nodes in the western part of the six municipalities of Tehran in the base period (1980-2020) and under the influence of climate change (2021-2050), (2051-2100) in the RCP 2.6 and RCP8.5 scenarios for the period 25 and 50 year returns were made.
Results and Discussion
The results showed that the values ​​of rainfall intensity in the duration of rainfall and different return periods in all three scenarios have increased compared to the frequency intensity curve of the base period, and the maximum rainfall intensity has increased in the short-term time base, and with the passage of time, the maximum rainfall intensity has decreased. and IDF curves are affected by short-term rainfall. The results of the model calibration showed that there is a good agreement between the observed and simulated data in the simulation of water runoff in the five investigated rainfall events. The results of the sensitivity analysis showed that the impervious areas have the greatest impact on the change of peak water discharge. The results of the evaluation of flood nodes showed that, for example, the number of flood nodes in the base period (1980-2020) and under the influence of climate change in the RCP2.6 and RCP8.5 scenarios (2021-2050) for the 25-year return period are 7, 10, and 12, respectively. The number of flood nodes in the base period (1980-2020) and under the influence of climate change scenario RCP2.6 and RCP8.5 (2051-2100) for the return period of 50 years are 9, 14 and 17, respectively.
Conclusion and Suggestions 
The results of this research showed that the number of flood catchment nodes in the basin increased in the 25-year return period compared to the 50-year return period in each period. According to the identification of critical nodes in the research area, by applying modern methods of urban runoff control, such as creating permeable surfaces and gardens, absorption wells and reservoirs and storage ponds, the runoff can be controlled at the source to reduce the volume and peak water in the downstream, so that the probability of occurrence Minimize flooding and flooding. Since the percentage of impervious areas in the study area is high, it is recommended to increase the dimensions of the channels in terms of the passage of flood during rains and to have the ability to direct more amount of runoff and reduce the amount of peak flow of runoff in the location of super critical nodes.

کلیدواژه‌ها [English]

  • Climate change
  • scenario
  • calibrate
  • validate
Ahmadi M. 2012. A multi criteria decision support system for watershed management under uncertain conditions, Ph.D. thesis, Colorado State University. 184 p.
Arman N, Shahbazi A, Faraji M, Dehdari S. 2019. Effect of urban development on runoff generation by SWMM (Case study: Khuzestan Province, Izeh). Watershed Engineering and Management. 11(3): 750-758. ‏ (In Persian).
Arvand S, Delghandi M, Ganji Z, Alipour A. 2020. Evaluation of storm water management Model (SWMM5. 0) in simulation of urban runoff (Case study: urban catchment of Neyshabur). Irrigation and Water Engineering. 10(3): 68-81. ‏(In Persian).
Bakhtiari B, Purmusavi S, Sayari N. 2014. Impact of climate change on intensity-duration-frequency curves of precipitation (Case study: Babolsar Station). Iranian Journal of Irrigation & Drainage. 8(4): 694-704. ‏‏(In Persian).
Badizadegan R, Khodashenas SR, Esmaili K. 2021. Calibration of swmm model in north catchment of Tehran. Journal of Range and Watershed Management. 73(4): 709-724. ‏‏(In Persian).
Browne S, Lintern A, Jamali B, Leitão JP, Bach P. M. 2021. Stormwater management impacts of small urbanising towns: The necessity of investigating the ‘devil in the detail’. Science of The Total Environment. 757(14): 38-35.
Dongquan Z, Jining C, Haozheng W, Qingyuan T, Shangbing C, Zheng S. 2009. GIS-based urban rainfall-runoff modeling using an automatic catchment-discretization approach (Case study: Macau). Environmental Earth Sciences. 59(2): 465-472.
Einlo F, Malekian A, Ahadnejad M. 2016. Evaluation of urbanization effect on runoff volume by using Stormwater Management Model (Case Study: Zanjan City Watershed). Iranian Journal Watershed Management Science. 10(33): 37-46. ‏(In Persian).
Ghahraman B. Abkhezr H. 2004. Improvement in intensity-duration-frequency relationships of rainfall in Iran. Journal of Water and Soil Science. 8(2): 1-14. (In Persian)
Gironas J, Roesner LA, Rossman LA, Dvis J. 2010. A new applications manual for the storm water management model (swmm). Journal of Elsevier, Environmental modeling & software. 25(6): 813-814.
Habibnejad R, Shokoohi A. 2020. Evaluating intensity, duration and frequency of short duration rainfalls using a regional climate change Model (Case study: Tehran). Iran Water Resources Research. 15(4): 412–424. ‏(In Persian).
Heydarzadeh M, Nohegar A, Malekian A, Khurani A. 2017. Assessment and sensitivity analysis quantity of runoff and drainage system in coastal urban area (Case study: Bandar Abbas coastal city). Journal of Water and Soil Conservation. 24(3): 203–218. ‏(In Persian).
Jamshidi B, Tahmasebi Birgani Y, Jafarpour M, Alavi Bakhtiarvand N, Babaei AA, Haghighi A, Goudarzi G. 2020. Determining the parameters of quantitative-qualitative runoff model for Shushtar city using SWMM calibration. Journal of Research in Environmental Health. 6(3): 239-249. ‏‏(In Persian).
Karimi V, Rashidpour M. 2019. Evaluation of detention tanks for reducing urban flooding. Amirkabir Journal of Civil Engineering. 51(2): 197-204. ‏(In Persian).
Kling H, Fuchs M, Paulin M. 2012. Runoff conditions in the upper danube basin under an ensemble of climate change scenarios. Journal of Hydrology. 4(24): 264-277.
Kobarfard M, Fazloula R, Zarghami M, Akbarpour A. 2019. Assessment uncertainty of swmm urban flood model using GLUE method (Case study: 2nd district municipality of Tabriz). Iran-Water Resources Research. 14(5): 103-117. ‏(In Persian).
Guan M, Sillanpää N, Koivusalo H. 2014. The response of runoff generation to urban development: modelling and understanding. In EGU General Assembly Conference. 6743 p.
‏Moradi M, Darbandi S. 2017. Approach for appraising spate risks in urban drainage systems using stormwater management model. Journal of Watershed Engineering and Management. 9(3): 276–291. ‏(In Persian).
Mostafazadeh R, Mirzaei S, Esmali A, Zabihi M. 2018. Sensitivity analysis of the flow hydrograph components due to changes in Clark's time-area model in Mohammad-Abad watershed, Gloestan Province. Iranian Journal of Soil and Water Research. 49(1): 91-99. ‏(In Persian).
Sadeghi S, Mohammad vali samani J, Mohammad vali saman H. 2020. Analyzing of hydraulic performance and possible damage to existing storm sewer networks tehran region 2 using swmm model. Iran-Watershed Management Science & Engineering. 14(50): 59-67. ‏(In Persian).
Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM. 2001. Validation of the swat model on a large rwer basin with point and nonpoint sources 1. Journal of the American Water Resources Association. 37(5): 1169-1188.
Sin J, Jun C, Zhu JH., Yoo C. 2014. Evaluation of flood runoff reduction effect of LID (low impact development) based on the decrease in CN (Case studies from Gimcheon Pyeonghwa district, Korea). Procedia Engineering. 70(1): 1531-1538.
Saurav KC, Shrestha S, Ninsawat S, Chonwattana S. 2021. Predicting flood events in kathmandu metropolitan City under climate change and urbanisation. Journal of Environmental Management. 2(81): 111894 p.
Temprano JO, Arango J, Cagiao J, Suarez I. 2006. Tejero. Storm water quality calibration by swmm (Case study: Northern Spain). Water SA. 32(1): 55-63.
Tingsanchali, T. 2012. “Urban flood disaster management. Procedia Engineering. 32(1): 25-37.
Willuweit L, O'Sullivan J, Shahumyan H. 2016. Simulating the effects of climate change, economic and urban planning scenarios on urban runoff patterns of a metropolitan region. Urban Water Journal. 13(8): 803-818.
Yu H, Huang G. Wu C. 2014. Application of the storm water management model to a piedmont city: A case study of Jinan City, China. Water Science & Technology. 70(5): 858–864.