تحلیل احتمالاتی شدت و مدت خشک سالی استان خراسان شمالی با استفاده از تابع‌های کاپولا

نوع مقاله : پژوهشی

نویسندگان

1 استادیار گروه مهندسی طبیعت، دانشکده کشاورزی شیروان، دانشگاه بجنورد

2 دانش آموخته دکتری علوم و مهندسی آبخیز، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 دانش آموخته کارشناس ارشد هیدروژئومورفولوژی، دانشگاه حکیم سبزواری

چکیده

مقدمه و هدف
خشک­سالی­ ها مجموعه ­ای از اثرهای محیط‌زیستی، اجتماعی و اقتصادی منفی را در یک منطقه یا کشور دارند. از ‌این‌رو استفاده و تحلیل از یک شاخص ماهانه که بتواند علاوه بر اندازه‌ی بارش، اثر تبخیر را نیز در اندازه‌ی عددی شاخص در نظر بگیرد، در تعیین سنجه‌های خشک­سالی بسیار مفید است. سنجه‌های مختلف نیز ترکیبی از متغیرها با توزیع حاشیه‌ای متفاوت بوده و به‌این منظور تحلیل آماری آنها مشکل است. بنابراین برای تعیین ساختار وابستگی بین دو یا چند متغیر تصادفی می‌توان از تابع‌های کاپولا استفاده کرد ‌‌که توزیع حاشیه‌‌ها از مدل‌سازی ساختار وابستگی بین متغیرها جدا می‌شود.
مواد و روش‌ها
در این پژوهش از شاخص شناسایی خشکی (RDI) برای تعیین شدت و فاصله‌های خشک­سالی شش ایستگاه هواشناسی استان خراسان شمالی بین سال­های 1397-1367 استفاده شد، و از تابع‌های کاپولا به­ منظور تحلیل هم‌زمان شدت و مدت مزبور نیز استفاده شد. 26 تابع مختلف کاپولا با استفاده از اندازه‌ها‌ی آماره­ های مختلف بررسی شد. همچنین از دو روش بهینه­ سازی محلی و شبیه­ سازی مونت کارلوی زنجیره‌ی مارکف با تخمین ­گر بیزین جهت برآورد عددی توزیع پسین سنجه‌های کاپولای منتخب استفاده شد. برای ارزیابی برازش کاپولا­های مختلف نیز از معیارهای رایج اندازه­ گیری برازش مناسب کاپولا­های مختلف شامل میانگین مربع‌های خطا، معیار اطلاعات بیزی، اطلاعات آکائیکه و معیارکارایی نش-ساتکلیف استفاده شد.
نتایج و بحث
در تمام ایستگاه ­ها اندازه‌ی ضریب همبستگی با دو آزمون پیرسون و کندال مثبت بود و روند یکسانی داشتند. نتایج آزمون کولموگروف اسمیرنوف در سطح معنی­ داری پنج درصد جهت انتخاب توزیع بهینه نشان داد که توزیع پارتوی تعمیم‌ یافته برای شدت و مدت خشک سالی ایستگاه بجنورد و توزیع نمایی برای سایر ایستگاه ­ها به­ عنوان توزیع برازش­ یافته مناسب‌تر است. تابع بهینه برای ایستگاه­ های بجنورد و مانه و سملقان تابع بور، ایستگاه­ های جاجرم و شیروان، تابع جو، ایستگاه فاروج، تابع گالامبوس و ایستگاه اسفراین، تابع BB1 بود. نتایج روش بهینه‌سازی محلی مطابقت بالایی با روش مونت ­کارلوی زنجیره‌ی مارکف دارد. برای دوره‌ی بازگشت 100 ساله در ایستگاه بجنورد شدت خشک­سالی 6/8، در ایستگاه اسفراین شدت خشک سالی 7/8، در ایستگاه فاروج شدت خشک­سالی 7/5، در ایستگاه جاجرم شدت خشک­سالی 7/8، در ایستگاه مانه و سملقان شدت خشک­سالی 8 و در ایستگاه شیروان شدت خشک­سالی 8/2 به‌دست آمد.
نتیجه‌گیری و پیشنهادها
این پژوهش، قابلیت بالای تابع‌های کاپولا در حل مسائل دو متغیره را نشان داد و استفاده از تمام تابع‌های ممکن در انتخاب توزیع­ های حاشیه ­ای و کاپولا در حل مسائل را توصیه می‌کند. همچنین مطابقت بالای دو روش بهینه ­سازی محلی و مونت­ کارلوی زنجیره‌ی مارکف برای برآورد فراسنجه‌های تابع‌ها به‌دلیل طول دوره‌ی آماری کم استفاده است. بررسی قابلیت­ های این تابع‌ها در حل موضوع‌های چندمتغیره، اجرای سایر برآوردگرهای مونت‌کارلوی زنجیره‌ی مارکف و استفاده از داده­ های طولانی­ تر برای مقایسه‌ی الگو­های مختلف بهینه ­سازی در پژوهش‌های آینده پیشنهاد می­ شود.­

کلیدواژه‌ها


عنوان مقاله [English]

The Probabilistic Analysis of Drought Severity- Duration in North Khorasan Province using Copula Functions

نویسندگان [English]

  • Mehdi Teimouri 1
  • Omid Asadi Nalivan 2
  • Sara Elahi 3
1 Assistant Professor, Department of Nature Engineering, Shirvan Faculty of Agriculture, University of Bojnord
2 Ph.D., Graduated in Watershed Sciences and Engineering, Gorgan University of Agricultural Sciences and Natural Resources
3 M.Sc. Graduated in Hydrogeomorphology, Hakim Sabzevari University
چکیده [English]

Introduction and Objective
Droughts have a set of negative environmental, social and economic effects in a region or country. Using a monthly index and its analysis that, in addition to precipitation values, takes into account the effect of evaporation on the numerical value of the index, is very useful in determining drought parameters. Different indices are also a combination of variables with different marginal distributions, and for this purpose, their statistical analysis is difficult. Therefore, in order to determine the structure of dependence between two or more random variables, copula functions can be used, the distribution of margins is separated from the modeling of the structure of dependence between variables.
Materials and Methods
In this study, RDI index was used to determine the severity and duration of drought in 6 stations of North Khorasan province between 1988-2018 and Copula functions were used to analyze the severiy and duration. 26 different Copula functions were investigated using different statistical values. Also, two methods of local optimization and Monte Carlo Markov chain simulation with Bayesian estimator were used to numerically estimate the posterior distribution of selected Copula parameters. In order to evaluate the fit of different copulas, the common criteria were used for measuring the fit of different copulas including mean squared error, Bayesian information criterion, Akaike information and Nash-Sutcliffe efficiency criterion.
Results and Discussion
In all stations, the values of correlation coefficient with Pearson and Kendall tests were positive and had the same trend. The results of the Kolmogorov-Smirnov test at a significance level of five percent for choosing the optimal distribution showed that the generalized Pareto distribution was selected for the intensity and duration of Bojnord station and the exponential distribution for other stations was selected as the appropriate fitted distribution. The optimal function for Bojnord, Maneh and Semelghan stations was Burr function, Jajarm and Shirvan stations, Joe function, Farouj station, Galambos function and Esfarayen station, BB1 function. The results of the local optimization method are highly consistent with the Markov chain Monte-Carlo method. For the 100-year return period, the drought severity at bojnord station is 6.8, at esfarayen station, drought severity is 7.8, at faruj station, drought severity is 7.5, at jajarm station, drought severity is 7.8, at the station in manesemelghan, the drought severity was 8 and in shirvan station, the drought intensity was 2.8.
Conclusion and Suggestions 
The current study shows the high capability of copula functions in solving two-variable problems and recommends the use of all possible functions in choosing marginal distributions and copula in solving problems. Also, the high correspondence between the two methods of local optimization and Markov chain Monte Carlo for estimating the parameters of the functions is probably due to the short statistical period used. Investigating the capabilities of these functions in solving multivariate problems, implementing other Monte Carlo Markov chain estimators, and using longer data to compare different optimization algorithms are suggested in future researches.

کلیدواژه‌ها [English]

  • AIC
  • BIC
  • Copula Function
  • maximum likelihood
  • reconnaissance Drought Index
Asadi Zarch M, Sivakumar B, Sharma A. 2015. Droughts in a warming climate: A global assessment of standardized precipitation index (SPI) and reconnaissance drought index (RDI). Journal of Hydrology. 526: 183-195.
Ballarin A, Barros G, Cabrera M, Wendland E. 2021. A copula-based drought assessment framework considering global simulation models. Journal of Hydrology: Regional Studies. 38p. https://doi.org/10.1016/j.ejrh.2021.100970
Bazrafshan O, Zamani H, Shekari M, Singh VP. 2020. Regional risk analysis and derivation of copula-based drought for severity-duration curve in arid and semis-arid regions. Theoretical and Applied Climatology. 141: 889-905.
Daneshzadeh M, Karami H, Sani Khani H, Farzin S, Mousavi FS. 2019. Application of copula functions and intelligent algorithms for analysis of meteorological drought of shahrood. Iranian Water Research Journal, 13 (1):91-104. (In Persian).
Doodman N, Amini M, Jabbariand H, Dolati A. 2021.  FGM generated archimedean copulas with concave multiplicative generators. Iranian Journal of Fuzzy Systems, 18(2): 15-29.
Ganguli P. 2014. Probabilistic analysis of extreme droughts in Southern Maharashtra using bivariate copulas. ISH Journal of Hydraulic Engineering, 20(1): 90-101.
Genest C, Favre AC.  2007. Everything you always wanted to know about copula modelling but were afraid to ask. Journal of Hydrologic Engineering, 12 (4): 347–368.
Han D,  Wang G, Liu T, Xue B, Kuczera G, Xu X. 2018. Hydroclimatic response of evapotranspiration partitioning to prolonged droughts in semiarid grassland. Journal of Hydrology 563:  766- 777.
IPCC. 2013. In: Stocker TF et al (eds) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment Report of the IPCC. Cambridge University press. Cambridge: https://doi.org/10.1017/CBO9781107415324.
IPCC. 2014. In: Pachauri RK et al (eds) Climate change 2014: synthesis Report. Contribution of working groups I, II and III to the fifth assessment Report of the IPCC. Geneva. 151 pp.
Jahannamaii N, khosravinia P, Sanikhani H, Mirabbasi R. 2020. Bivariate Analysis of Duration and Severity of Drought in Sanandaj and Saqez Stations. Journal of Irrigation and Water Engineering, 11 (2): 131-146. (In Persian).
Jaser M, Min A. 2021. On tests for symmetry and radial symmetry of bivariate copulas towards testing for ellipticity. Computational Statistics. 36:1845–1870 https://doi.org/10.1007/s00180-020-00994-0.
Khalili D, Farnoud T, Jamshidi H, Kamgar-Haghighi AA, Zand-Parsa S .2011. Comparability analyses of the SPI and RDI meteorological drought indices in different climatic zones. Water Resourse Management, 25(6):1737–1757.
Li W. 1990. Mutual information functions versus correlation functions. Journal of Statistical Physics. 60: 823–837.
Li F, Zheng Q. 2016. Probabilistic modelling of flood events using the entropy copula, Advances in Water Resources, 97: 233-240. https://doi.org/10.1016/j.advwatres.2016.09.016.
Li Z, Shao Q, Tian Q, Zhang L. 2020. Copula-based drought severity-area-frequency curve and its uncertainty, a case study of Heihe River basin, China. Hydrology Research, 51 (5): 867–881 https://doi.org/10.2166/nh.2020.173.
Ma J, Sun Z. 2011. Mutual Information Is Copula Entropy. Tsinghua science and technology, 16(1): 51-54.
Maleki A, Torkamani MJ. 2015. Drought Management for Optimazation of Water Resources. Agricultural Economics Research, 7(1): 65-89. (In Persian).
 Mesbahzadeh T, Mirakbari M, MohseniSaravi M, Soleimani Sardoo F,  Miglietta M. 2020. Meteorological drought analysis using copula theory and drought indicators under climate change scenarios (RCP). Meteorological Applications. 27(1): https://doi.org/10.1002/met.1856.
Mirabbasi R, Fakheri-Fard A, Dinpashoh Y.2012. Bivariate drought frequency analysis using the copula method. Theoretical and Applied Climatology, 108 (1–2):191–206.
Mishra AK, Singh VP. 2010. Changes in extreme precipitation in Texas. Journal of Geophysics Research Atmosphere. 115(D14):: https:// doi. Org/10. 1029/ 2009J D013398.
Mishra AK, Singh VP, Desai VR. 2009. Drought characterization: a probabilistic approach. Stochastic Environment Research Risk Assessment. 23: 41–55. https://doi.org/10.1007/s00477-007-0194-2.
Mousavi Nadoushani S, Alimohammadi S, Ahani A, Behrouz M, Mousavi SM. 2018. Bivariate drought frequency analysis in Gharesoo-Gorganrud basin by using copulas. Journal of Water and Soil Conservation, 25(4): 71-91. (In Persian).
Nelsen RB. 2007. An introduction to copulas, 2nd ed.; Springer. Science Business Media: New York, NY, USA. 272 p.
Olyaei M, Zeynolabedin A, Ghiasi B, karbassi A. 2019. Developing combined regional drought index and presenting return period curves using copula function. Modares Civil Engineering Journal. 19 (5):167-179. (In Persian).
Otkur A, Wu D, Zheng Y, Kim JS, Lee JH. 2021. Copula-based drought monitoring and assessment according to zonal and meridional temperature gradients. Atmosphere. 12(8): https://doi.org/10.3390/atmos12081066
Sadegh M, Ragno E, Aghakouchak A. 2017. Multivariate copula analysis toolbox (MvCAT): describing dependence and underlying uncertainty using a Bayesian framework. Water Resources Research. 53: 5166–5183.
Saghafian B, Mehdikhani H. 2014. Drought characterization using a new copula-based trivariate approach. Natural hazards. 72(3): 1391-1407.
Salvadori G, De Michele C. 2010. Multivariate multi parameter extreme value models and return periods: a copula approach. Water resources research. 46(10): https://doi.org/10.1029/2009WR009040.
Serinaldi F, Bonaccorso B, Cancelliere A, Grimaldi S. 2009.  Probabilistic characterization of drought properties through copulas. Physics and Chemistry of the Earth. Parts A/B/C 34( 10–12): 596-605.
Shiau JT,  Modarres R. 2009. Copula-based drought severity-duration-frequency analysis in Iran. Meteorological applications. 16: 481 – 489.
Shokoohi A. 2012. Comparison of SPI and RDI in drought analysis in local scale with emphasizing on agricultural drought (Case study: Qazvin and Takestan). Iranian Journal of Irrigation and Drainage. 3(1): 111-122. (In Persian).
Shokoohi A, Morovati R. 2015. Basinwide comparison of RDI and SPI within an IWRM Framework. Water Resources Management. 29: 1-18.
Sklar M. 1959. Fonctions de Repartition an dimensions ET Leurs Marges, Publications de l’Institut Statistique de l’Université de Paris. 8: 229-231.
Tigkas D, Vangelis H, Tsakiris G. 2019. Drought characterisation based on an agriculture-oriented standardised precipitation index. Theoretical and Applied Climatology. 135:1435–1447.
Tigkas D, Vangelis H, Tsakiris G. 2015. DrinC: a software for drought analysis based on drought indices. Earth Science Informatics. 8(3): 697-709.
Tosunoglu F, Kisi O. 2016. Joint modelling of annual maximum drought severity and duration. Journal of Hydrology. 543: 406-422.
Tsakiris G, Nalbantis I, Pangalou D, Tigkas D, Vangelis H. 2008. Drought meteorological monitoring network design for the Reconnaissance Drought Index (RDI). 1st international conference. Drought management: scientific and technological innovations .Zaragoza, Spain.
Ullah H, Akbar M. 2021. Bivariate homogenous regions and projections based on copula function using RDI and SPI indices for drought risk assessment in Pakistan. Arab J Geoscience 14. : https://doi.org/10.1007/s12517-021-08645-4
Vicente-Serrano SM, Begueria S, Lopez-Moreno JI .2010. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climatology. 23(7):1696–1718.
Wang J, Rong G, Li K, Zhang J. 2021. Analysis of drought characteristics in northern Shaanxi based on copula function.Water.13: https://doi.org/10.3390/w13111445.
Yang J, Chang J, Wang, Y, Li Y, Hu H, Chen Y, Huang Q, Yao J. 2018. Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index. Journal of Hydrology. 557: 651-667.
Yue S, Ouarda, TB, Bobée B, Legendre P, Bruneau P.  1999. The Gumbel mixed model for flood frequency analysis. Journal of Hydrology. 226(1–2): 88–100.
Zhang L, Singh VP. 2007. Bivariate rainfall frequency distributions using Archimedean copulas. Journal of Hydrology. 332(1–2): 93-109.
Zhao P, Lü H, Fu G, Zhu Y, Su J, Wang J. 2017. Uncertainty of hydrological drought characteristics with copula functions and probability distributions: a case study of Weihe River, China. Water, 9 (5): https://doi.org/10.3390/w9050334.