مدل سازی توان سیل خیزی در آبخیز زرینه رود با استفاده از مدل های هوش مصنوعی

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری محیط‌زیست گرایش منابع آب، پردیس بین الملل کیش دانشگاه تهران

2 استاد دانشکده ی مهندسی محیط‌زیست، دانشگاه تهران

3 دانشیار دانشکده ی مهندسی محیط‌زیست، دانشگاه تهران

10.22092/wmrj.2023.360973.1513

چکیده

مقدمه و هدف
در میان خطرها و بلاهای طبیعی، بدون تردید سیل به‌عنوان ناگوارترین خطر در جهان شناخته‌شده است. یکی از راه‌کارهای اساسی برای کاهش خسارت‌های ناشی از سیل تهیه‌ی نقشه‌ی حساسیت سیل است. پیش ­بینی مکانی احتمال رخداد سیل با استفاده از مدل­ هایی که براساس داده ­های مکانی و تاریخی به وجود آمده‌اند، در نهایت منجر به تهیه‌ی نقشه ­های حساسیت ­پذیری سیلاب می ­شود، از راه‌کارهای مناسب برای برنامه ­ریزان مدیریت زمین‌ها در مناطق مختلف برای پیشگیری از رخداد این پدیده است. در این پژوهش، به‌منظور تعیین مناطق مستعد رخداد سیل از مدل ترکیبی (هیبریدی) استنتاج عصبی و فازی تطبیقی و دستورالعمل بهینه­ سازی فراکاوشی رقابت امپراتوری (ANFIS-ICA)  و مدل ترکیبی استنتاج عصبی و فازی تطبیقی و دستورالعمل بهینه­ سازی فراکاوشی ازدحام ذرات (ANFIS-PSO) استفاده شد.
مواد و روش ­ها
آبخیز زرینه­ رود در شمال‌غربی استان کردستان و میان طول جغرافیایی ″30′48°45 و ″20′48°46 شرقی و عرض جغرافیایی ″20′42°35 و ″15′23°36 شمالی است. مساحت این آبخیز 4485/2 کیلومترمربع است. اقلیم منطقه معتدل مرطوب است و میانگین بارندگی سالانه‌ی آن 480 میلی‌متر است. موقعیت رخدادهای سیل به‌طور تصادفی به دو گروه آموزش (70%) و اعتبارسنجی (30%) تقسیم شد. عامل‌های محیطی مختلف (بلندی، جهت، شیب، انحنای سطح، کاربری زمین، سنگ­ شناسی، بارندگی، شاخص توان جریان، فاصله از آبراهه، شاخص رطوبت پستی‌بلندی) به‌عنوان متغیر مستقل در مدل‌سازی انتخاب شدند و لایه ­های رقومی آن­ها تهیه شد. در این پژوهش از مدل ANFIS-ICA و مدل ANFIS-PSO  استفاده شد. نتایج پیش ­بینی مدل‌ها بر اساس معیار (AUC) و آماره‌ی مهارت صحیح (TSS) ارزیابی شد.
نتایج و بحث
بر پایه‌ی یافته ­های این پژوهش در مرحله‌ی اعتبارسنجی، مدل ANFIS-PSO با (AUC) 98/0 و آماره‌ی مهارت صحیح (TSS) 89/0 بیشترین دقت را داشت. همچنین عامل فاصله از آبراهه به‌عنوان مهم‌ترین عامل محیطی شناسایی شد. افزون بر این، شیب زمین و TWI به‌ترتیب در جایگاه‌های دوم و سوم اهمیت بودند.
نتیجه ­گیری و پیشنهادها
بر اساس نتایج این پژوهش، رویکرد ترکیبی (هیبریداسیون) که ترکیب شدن مدل­ های یادگیری ماشینی و دستورالعمل­ های بهینه­ سازی فراکاوشی است، موجب افزایش قدرت یادگیری و همچنین توان پیش ­بینی مدل شد. همچنین عامل فاصله از آبراهه و شیب زمین مهم‌ترین عامل‌های مؤثر در سیل­ گیری هستند. بر اساس نتایج و تحلیل­ های انجام‌شده می­ توان نتیجه ­گیری کرد که مدل­ های یادگیری ماشینی قابلیت زیادی در پیش ­بینی توان سیل­ گیری دارند. در این پژوهش نقشه­ های توان سیل تهیه‌شده می ­تواند برای مدیران و کارشناسان بسیار کاربردی بوده و در برنامه ­ریزی اقدام‌های مهارکردن سیل استفاده‌ی عملی داشته باشد. توجه­ کردن به امکانات و اقدام‌های مهارکردن سیل در موقعیت­ هایی که توان سیل‌گیری زیادی دارند، موجب افزایش مدیریت سیل از نظر اقتصادی و فنی می­ شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Flood Potential Modeling in Zarineh Rood Watershed Using Artificial Intelligence Models

نویسندگان [English]

  • Mehdi Aalami 1
  • Mojtaba Ardestani 2
  • Bahram Malekmohammadi 3
1 Ph.D. Student in Environmental Engineering, Water Resources, Kish International Campus, University of Tehran
2 Professor, Faculty of Environment, University of Tehran
3 Associate Professor, Faculty of Environment, University of Tehran
چکیده [English]

Introduction and Goal
Among natural disasters, flood is undoubtedly the most catastrophic hazard in the world. One of the basic strategies for reducing the damage caused by floods is to prepare a flood sensitivity map. Spatial prediction of the flooding probability using models created from spatial and historical data, which ultimately leads to the preparation of flood sensitivity maps is an appropriate solution for land management planners in different areas to prevent the occurrence of this phenomenon. In this research, in order to determine flood-prone areas, the hybrid model of adaptive neural and fuzzy inference and the metaexploratory optimization algorithm of imperial competition (ANFIS-ICA) and the hybrid model of adaptive neural and fuzzy inference and the metaexploratory optimization algorithm of particle swarm (ANFIS-PSO) are used.
Materials and Methods
The Zarine River watershed has an area of 4485 km2 and is located in the northwest of Kurdistan province between the longitude of 45°48ʹ30ʺand 46°48ʹ20ʺ east and the latitude of 35°42ʹ20ʺ and 36°23ʹ15ʺ north. The climate of the region is humid and the average annual rainfall is 480 mm. Locations of flood events were randomly divided into two groups: training (70%) and validation (30%). Various environmental factors (height, direction, slope, surface curvature, land use, lithology, rainfall, flow power index, distance from river and topographic wetness index) were selected as independent variables in the modeling and their digital layers were prepared. The ANFIS-ICA and ANFIS-PSO models were used in this research and their prediction results were evaluated based on the criterion (AUC) and the true skill statistic (TSS).
Results and Discussion
On the basis of these findings, in the validation stage, the model (ANFIS-PSO) with an AUC of 0.98 and a true skill statistic (TSS) of 0.89 had the highest accuracy. The results also showed that the factor of distance from the stream was identified as the most important environmental factor. In addition, ground slope and TWI were ranked second and third in importance, respectively.
Conclusion and Suggestions
Based on the results, the hybridization approach, which combines machine learning models and meta-exploratory optimization algorithms, improves the learning power as well as the predictive power of the model. The results of this research showed that the distance from the stream and the slope of the land are the most important factors affecting flooding. Based on the results and analysis, it can be concluded that machine learning models have a high capability for predicting flood potential. The flood potential maps prepared in this research can be very useful for managers and experts and can be used in planning flood prevention measures. Directing flood control facilities and measures in situations with a high flood potential will improve flood management from an economic and technical point of view.

کلیدواژه‌ها [English]

  • Flood
  • land management
  • modeling
  • natural hazards
  • risk
Ahmadlou M, Karimi M, Alizadeh S, Shirzadi A, Parvinnejhad D, Shahabi H, Panahi M. 2019. Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA). Geocarto International. 34 (11):1252-1272.
Atashpaz-Gargari E, Lucas C. 2007. Imperialist Competitive Algorithm: An algorithm for optimization inspired by imperialistic competition. IEEE Congress on Evolutionary Computation. pp. 4661-4667.
Bubeck P, Botzen W, Aerts J. 2012. A review of risk perceptions and other factors that influence flood mitigation behavior. Risk Analysis. 32(9):1481–1495.
Bui DT, Pradhan B, Nampak H, Bui QT, Tran QA, Nguyen QP. 2016. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology. 540:317–330. https://doi.org/10.1016/j.jhydrol.2016.06.027.
Bui QT, Nguyen QH, Nguyen XL, Pham VD, Nguyen HD, Pham VM. 2020. Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. Journal of Hydrology. 581, 124379. https://doi.org/10.1016/j.jhydrol.2019.124379.
Bui TD, Panahi M, Shahabi H, Singh VP, Shirzadi A, Chapi K, Khosravi K, Chen W, Panahi S, Li S, Ahmad B. 2018. Novel Hybrid Evolutionary Algorithms for Spatial Prediction of Floods. Scientific Reports. 8:15364. DOI:10.1038/s41598-018-33755-7.
Chapi K, Singh VP, Shirzadi A, Shahabi H, Bui DT, Pham BT, Khosravi K, 2017. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental modelling and software. 95:229-245. https://doi.org/10.1016/j.envsoft.2017.06.012.
Chen W, Li Y, Xue W, Shahabi H, Li S, Hong H, Ahmad BB. 2020. Modeling flood susceptibility using data-driven approaches of naïve bayes tree, alternating decision tree, and random forest methods. Science of the Total Environment. 701: 134979. https://doi.org/10.1016/j.scitotenv.2019.134979.
Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A. 2019. An Ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of the Total Environment. 651(2): 2087-2096. https://doi.org/10.1016/j.scitotenv.2018.10.064.
Dahri N, Abida H. 2017. Monte Carlo simulation-aided analytical hierarchy process (AHP) for flood susceptibility mapping in Gabes Basin (southeastern Tunisia). Environmental Earth Sciences. 76(7):1-14.
Darabi H, Choubin B, Rahmati O, Haghighi A, Pradhan B, Klove B. 2019. Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. Journal of Hydrology. 569:142–154. https://doi.org/10.1016/j.jhydrol.2018.12.002.
Dickie JA, Parsons AJ. 2012. Eco‐geomorphological processes within grasslands, shrublands and badlands in the semi‐arid Karoo, South Africa. Land Degradation Development. 23(6):534-547.
Felicĺsimo Á, Cuartero A, Remondo J, Quirόs E. 2013. Mapping landslide susceptibility with logistiv regression, multiple adaptive regression splines, classification and regression tress, and maximum entropy methods: A comparative study. Landslides. 10:175-189. https://doi.org/10.1007/s10346-012-0320-1.
Gupta A. 2020. An Introduction to Large Rivers. John Wiley and Sons. Hampf A.C, Stella T, Berg-Mohnicke M, Kawohl T, Kilian M, Nendel C. 2020. Future yields of double-cropping systems in the Southern Amazon, Brazil, under climate change and technological development. Agricultural Systems. 177: 102707. https://doi.org/10.1016/j.agsy.2019.102707.
Haghizadeh A, Yousefi H, Yarahmadi Y, Ebrahimian T. 2019. Comparison of Hybrid Model (ANFIS-PSO) and Tork Experimental Model in Reference Estimation of Evapotranspiration (Case study: Poldokhtar-Lorestan). Iranian Journal of ECO Hydrology. 6(3):685-694. (In Persian).
Hong H, Pradhan B, Jebur MN, Bui DT, Xu C, Akgun A. 2016. Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines. Environmental Earth Science. 75: 40. https://doi.org/10.1007/s12665-015-4866-9.
Hong H, Tsangaratos P, Ilia I, Liu J, Zhu AX, Chen W. 2018. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Science of the total environment. 625:575-588. https://doi.org/10.1016/j.scitotenv.2017.12.256.
Islam ARMT, Talukdar S, Mahato S, Kundu S, Eibek KU, Pham QB, Linh NTT. 2021. Flood susceptibility modelling using advanced ensemble machine learning models. Geoscience Frontiers. 12(3):101075.
Khosravi K, Melesse AM, Shahabi H, Shirzadi A, Chapi K, Hong H. 2019. Flood susceptibility mapping at Ningdu catchment, China using bivariate and data mining techniques. In Extreme Hydrology and Climate Variability. pp. 419-434. https://doi.org/10.1016/B978-0-12-815998-9.00033-6.
Lee S, Kim JC, Jung HS, Lee MJ, Lee S. 2017. Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomatics, Natural Hazards and Risk. pp. 1-19.
Meles MB, Younger SE, Jackson CR, Du E, Drover D. 2020. Wetness index based on landscape position and topography (WILT): Modifying TWI to reflect landscape position. Journal Environmental Management. 255: 109863. https://doi.org/10.1016/j.jenvman.2019.109863.
Miller JR, Ritter DF, Kochel RC. 1990. Morphometric assessment of lithologic controls on drainage basin evolution in the Crawford Upland, south-central Indiana. American Journal of Science. 290:569–599.
Mirzaei S, Vafakhah M, Pradhan B, Alavi SJ. 2021. Flood susceptibility assessment using extreme gradient boosting (EGB), Iran. Earth Science Informatics. 14(1):51-67.
Moghaddam DD, Pourghasemi HR, Rahmati O. 2019. Assessment of the contribution of Geo-Environmental Factors to Flood Inundation in a Semi-Arid Region of SW Iran: Comparison of Different Advanced Modeling Approaches. In Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques. pp. 59-78.
Opperman JJ, Galloway GE, Fargione J, Mount JF, Richter BD, Secchi S. 2009. Sustainable floodplains through large-scale reconnection to rivers, Science. 326(5959):1487–1488.
Pham BT, Lu C, Van Phong T, Nguyen HD, Van Le H, Tran TQ, Ta HT, Prakash I. 2021. Flood risk assessment using hybrid artificial intelligence models integrated with multi-criteria decision analysis in Quang Nam Province, Vietnam. Journal of Hydrology. 592: 125815. https://doi.org/10.1016/j.jhydrol.2020.125815.
Phillips SJ, Anderson, RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modeling. 190(3-4):231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.
Pourghasemi HR, Termeh SVR, Kariminejad N, Hong H, Chen W. 2020. An assessment of metaheuristic approaches for flood assessment. Journal of Hydrology. 582: 124536. https://doi.org/10.1016/j.jhydrol.2019.124536.
Rahmati O, Panahi M, Ghiasi SS, Deo RC, Tiefenbacher JP, Pradhan B, Bui DT. 2020. Hybridized neural fuzzy ensembles for dust source modeling and prediction. Atmospheric Environment. 224:117320. https://doi.org/10.1016/j.atmosenv.2020.117320.
Rahmati O, Pourghasemi HR, Zeinivand H. 2016. Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golestan Province, Iran. Geocarto International. 31(1):42–70.
Rahmati O, Pourghasemi HR. 2017. Identification of Critical Flood Prone Areas in Data-Scarce and Ungauged Regions: A Comparison of Three Data Mining Models. Water Resource Management. 31:1473–1487. https://doi.org/10.1007/s11269-017-1589-6.
Saha A, Pal SC, Arabameri A, Blaschke T, Panahi S, Chowdhuri I, Chakrabortty R, Costache R, Arora A. 2021. Flood susceptibility assessment using novel ensemble of hyperpipes and support vector regression algorithms. Water. 13(2):241.
Sampson CC, Smith AM, Bates PD, Neal JC, Alfieri L, Freer JE. 2015. A high‐resolution global flood hazard model. Water Resources. 51(9):7358-7381. https://doi.org/10.1002/2015WR016954.
Sarkar D, Mondal P. 2020. Flood vulnerability mapping using frequency ratio (FR) model: a case study on Kulik river basin, Indo-Bangladesh Barind region. Applied Water Science. 10(1):17. https://doi.org/10.1007/s13201-019-1102-x.
Sharifi Garmdareh E, Vafakhah M, Eslamian SS. 2018. Regional flood frequency analysis using support vector regression in arid and semi-arid regions of Iran. Hydrological Sciences Journal. 63(3):426-440.
Siahkamari S, Haghizadeh A, Zeinivand H, Tahmasebipour N, Rahmati O. 2018. Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto international. 33(9):927-941.
Sidel RC, Ochiai H. 2006. Landslides: Processes, Prediction, and Land use. Water Resource Monograph: 18, AGU books, Print ISBN: 9780875903224 |Online ISBN: 9781118665954 |DOI:10.1029/WM018. 312 p.
Stevaux JC, de Azevedo Macedo H, Assine ML, Silva A. 2020. Changing fluvial styles and backwater flooding along the Upper Paraguay River plains in the Brazilian Pantanal wetland. Geomorphology. 350:106906. https://doi.org/10.1016/j.geomorph.2019.106906.
Tang X, Li J, Liu M, Liu W, Hong H. 2020. Flood susceptibility assessment based on a novel random Naïve Bayes method: A comparison between different factor discretization methods. Catena. 190:104536. https://doi.org/10.1016/j.catena.2020.104536.
Termeh SVR, Kornejady A, Pourghasemi HR, Keesstra S. 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of the Total Environment. 615:438-451. https://doi.org/10.1016/j.scitotenv.2017.09.262.
Torcivia CEG, López NNR. 2020. Preliminary Morphometric Analysis: Río Talacasto Basin, Central Precordillera of San Juan, Argentina. Advances in Geomorphology and Quaternary Studies in Argentina. Cham. pp. 158–168.