ارزیابی تفکیک مکانی مدل‌های رقومی ارتفاعی بر دقت برآورد بارش در مقیاس سالانه

نوع مقاله : پژوهشی

نویسندگان

1 دانش آموخته‌ی دکتری علوم و مهندسی آبخیزداری، دانشکده‌ی منابع‌طبیعی، دانشگاه تهران، ایران

2 دانشیار دانشکده ی منابع‌طبیعی، دانشگاه تهران، ایران

3 استاد دانشکده ی منابع‌طبیعی، دانشگاه تهران، ایران

4 استادیار مرکز تحقیقات و آموزش کشاورزی و منابع‌طبیعی استان آذربایجان‌ غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ایران

چکیده

مقدمه و هدف
کاربران با بهره‌گیری از ایستگاه‌های باران‌سنجی داده‌های دقیقی از اندازه‌ی بارندگی را تهیه می‌کنند. با این ‌حال، درون‌یابی داده‌های بارندگی به‌دلیل تغییرپذیری زمانی و مکانی دشوار است. ازاین‌رو ایستگاه‌های باران‌سنجی در بسیاری از مناطق پراکندگی مناسبی ندارند و این مشکل نیز در مناطق کوهستانی بیش‌تر است. در یک آبخیز کوهستانی، درک تعامل میان تفکیک‌پذیری مدل رقومی ارتفاعی (DEM) و متغیرهای آب و هوایی برای درون‌یابی دقیق مکانی میانگین بارندگی در بسیاری از مناطق ضروری است و از سوی دیگر نیاز به اطلاعات دقیقی در مدل‌سازی آب‌شناختی و بسیاری از بررسی‌های محیط‌زیستی و اقلیمی است. بر این اساس یکی از مشکلاتی که در بسیاری از مطالعات آب‌شناسی وجود دارد و همیشه بدون توجه به آن نقشه‌های بارشی تهیه می‌شود، تهیه‌ی نقشه‌ی بارش با استفاده از درون‌یابی و یا استفاده از مدل‌های رقومی ارتفاعی در دسترس است، که دارای خطای بارش برآوردی است.
مواد و روش‌ها
در این پژوهش به‌منظور معرفی بهترین مدل رقوم ارتفاعی برای کاربران در تهیه‌ی نقشه‌ی شیب بارش از داده‌های 11 ایستگاه هواشناسی در استان کرمانشاه و چهار مدل رقومی ارتفاعی (DEM) با تفکیک مکانی 30، 90، 1000 و 10000 متر که متداول‌ترین مدل‌های رقومی ارتفاعی در پژوهش‌ها هستند، استفاده شد. با استفاده از مدل وایازی خطی برازش داده‌شده میان بلندی هر ایستگاه و میانگین بارش 20 ساله، نقشه‌ی بارش سالانه برای استان کرمانشاه تهیه شد و سپس بر اساس معیارهای ارزیابی خطا بهترین مدل رقومی ارتفاعی در برآورد بارش مشخص شد.
نتایج
نتایج این پژوهش نشان داد که در برآرود بارش مدل‌های رقومی ارتفاعی با اندازه‌ی سلولی 1000 و 10000 متر (R2 = 0.76, 0.81) در مقایسه با DEMهای با دقت مکانی 30 و 90 متری (R2= 0.75) دقت بیشتری داشتند. در بررسی ضریب نش - ساتکلیف (NS) مشخص شد که DEM با تفکیک مکانی 1000 متر (یک کیلومتر) با ضریب نشساتکلیف 0/76، سطح معنی‌داری 0/01 و ضریب همبستگی 0/81 در مقایسه با دیگر مدل‌های رقومی ارتفاعی دقت بیشتری داشت.
نتیجه‌گیری و پیشنهادها
نتایج این پژوهش می‌تواند در برآرود و تعمیم بارش در مناطق فاقد ایستگاه و هم‌چنین در تهیه‌ی نقشه‌های بارشی در مناطقی که تعداد ایستگاه محدود است، استفاده شود. افزون بر این در روش‌های درون‌یابی تک‌متغیره که دقت مناسبی به‌دلیل در نظر نگرفتن فاصله‌های مکانی ندارند، استفاده شود. هم‌چنین با توجه به پستی‌بلندی پیچیده‌ی زمین و نبودن یکنواختی ایستگاه‌های هواشناسی در سطح کره‌ی زمین، برای برآورد بارش به کارگیری مدل‌های رقوی ارتفاعی با قدرت تفکیک مکانی زیادتر نیاز است که با حذف سطوح پستی‌بلندی‌های خطاساز دقت برآورد مدل‌های رقومی در ارزیابی پژوهش‌های بارش افزایش خواهد یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating the Spatial Resolution of Digital Elevation Models (DEMs) on the Accuracy of Rainfall Estimation at the Annual Scale

نویسندگان [English]

  • Morteza Gheysouri 1
  • Shahram Khalighi Sigaroodi 2
  • Ali Salajegheh 3
  • Bahram Choubin 4
1 Ph.D. of Watershed Management, Faculty of Natural Resources, University of Tehran, Iran
2 Associate Professor, Faculty of Natural Resources, University of Tehran, Iran
3 Professor, Faculty of Natural Resources, University of Tehran, Iran
4 Assistant Professor, Soil Conservation and Watershed Management Research Department, West Azarbaijan Agricultural and Natural Resources Research and Education Center (AREEO), Urmia, Iran
چکیده [English]

Introduction and Goal
Users prepare accurate data of the amount of rainfall by using rain gauge stations. However, an interpolation of rainfall data is difficult due to temporal and spatial variability. Therefore, rain gauge stations are not well distributed in many areas, especially in mountainous areas. In a mountainous area, understanding the interaction between the resolution of the Digital Elevation Model (DEM) and climate variables is necessary for accurate spatial interpolation of average rainfall in many areas, and on the other hand, the need for accurate information in hydrological modeling and many environmental studies and it is climatic. One of the problems that exists in many hydrological studies is that rainfall maps are always prepared using interpolation or available DEM, regardless of rainfall, which have an estimated rainfall error.
Materials and Methods
In this study, four DEMs with spatial resolutions of 30, 90, 1000, and 10000 m, which are the most common DEMs in studies, were used to introduce the best elevation digital model for extracting the rainfall gradient map from the data of 11 meteorological stations in Kermanshah province. A rainfall map for Kermanshah province was prepared using a linear regression model fitted between the height of each station and the 20-year average rainfall. The best DEM for rainfall estimation was then determined on the basis of error evaluation criteria.
Results
The results of this research showed that in estimating rainfall, DEMs with cell sizes of 1000 and 10000 m (R2 = 0.76, 0.81) were more accurate than DEMs with spatial accuracy of 30 and 90 m (R2 = 0.75). In the examination of the Nash–Sutcliffe coefficient (NS), compared to other digital height models of accuracy, DEM with a spatial resolution of 1000 m (one km) with a Nash–Sutcliffe coefficient of 0.76, a significance level of 0.01, and a correlation coefficient of 0.81 was found to have greater accuracy.
Conclusion and Suggestions
The results of the present study can be used to estimate and generalize rainfall in areas that do not have stations and to prepare rainfall maps in areas where the number of stations is limited. In addition, it should be used in univariate interpolation methods that do not have proper accuracy because spatial distances are not considered. In addition, due to the complex topography of the earth and the non-uniformity of meteorological stations on the earth’s surface, high-resolution models with higher spatial resolution are required for the estimation of rainfall, which increases the accuracy of digital models in the evaluation of rainfall studies by removing topographical levels that cause errors.

کلیدواژه‌ها [English]

  • DEM resolution
  • Kermanshah province
  • linear regression
  • mountainous watershed
  • rainfall estimation
  • rainfall gradient
Adhikary SK, Muttil N, Yilmaz AG. 2017. Cokriging for enhanced spatial interpolation of rainfall in two Australian catchments, Hydrological Processes. 31(12): 2143-2161.
Asakereh H,  Seifipour Z. 2012. Spatial modeling of annual precipitation in iran. geography and development. 10(29):15-30. (In Persian).
Aydin O. 2018. Evaluation of kriging with external drift method in spatial modelling of precipitation: a case of Aegean Region, Turkey, Dumlupınar Üniversitesi Sosyal Bilimler Dergisi. 56:1-18.
Baez-Villanueva-test OM., Zambrano-Bigiarini M, Beck HE, McNamara I, Ribbe L, Nauditt , Birkel C, Verbist K, Giraldo-Osorio JD, Xuan Thinh N. 2020. RFMEP: A novel Random Forest method for merging gridded precipitation products and ground-based measurements. Remote Sensing Environment. 239:1-19. doi.org/10.1016/j.rse.2019.111606.
Bai X, Wu X, Wang P. 2019. Blending long-term satellite-based precipitation data with gauge observations for drought monitoring: Considering effects of different gauge densities. Journal of Hydrology. 577:124007. doi.org/10.1016/j.jhydrol.2019.124007.
Bati HG. 2022. Digital Elevation Model resolution and its impact on the spatial pattern of rainfalltemperature prediction at the catchment scale: The case of the Mille catchment, Ethiopia. Meteorology Hydrology and Water Management. Research and Operational Applications. 10 p. doi. 10.26491/mhwm/149231.
Beck HE, Wood EF, McVicar TR, Zambrano-Bigiarini M, Alvarez-Garreton C, Baez-Villanueva OM, Sheffield J, Karger DN. 2020. Bias correction of global high-resolution precipitation climatologies using streamflow observations from 9372 catchments. Journal of Climate. 33(4):1299-1315. doi.org/10.1175/JCLI-D-19-0332.1.
Bertini C, Buonora L, Ridolfi E, Russo F, Napolitano F. 2020. On the use of satellite rainfall data to design a dam in an ungauged site. Water. 12(11):1-20. doi.org/10.3390/w12113028.
Cantet P. 2017. Mapping the mean monthly precipitation of a small island using kriging with external drifts. Theoretical and Applied Climatology. 127:31-44.
Chao L, Zhang K, Li Z, Zhu Y, Wang J, Yu Z. 2018. Geographically weighted regression based methods for merging satellite and gauge precipitation. Journal of Hydrology. 558:275-289. doi.org/10.1016/j.jhydrol.2018.01.042.
Chen F, Gao Y, Wang Y, Li X. 2020 a. A downscaling-merging method for highresolution daily precipitation estimation. Journal of Hydrology. 581:124414. doi.org/10.1016/j.jhydrol.2019.124414.
Chen HE, Chiu YY, Tsai TL, Yang JC. 2020. Effect of rainfall, runoff and infiltration processes on the stability of foot slopes. Water. 12(5):1-19. doi.org/10.3390/w12051229.
Chiew FH, McMahon TA. 2002. Modelling the impacts of climate change on Australian streamflow. Hydrological Processes. 16(6):1235-1245. doi.org/10.1002/hyp.1059.
Dezfuli AK, Zaitchik BF, Badr HS, Evans J, Peters-Lidard CD. 2017. The role of low-level, terrain-induced jets in rainfall variability in Tigris–Euphrates headwaters. Journal of Hydrometeorology. 18(3):819-835. doi.org/10.1175/JHM-D-16-0165.1.
Dinku T. 2019. Challenges with availability and quality of climate data in Africa, [in:] Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation, A.M. Melesse, W. Abtew, G. Senay (eds.), Elsevier. pp. 71-80.
Duan Z, Bastiaanssen WGM. 2013. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure. Remote Sensing of Environment. 131:1-13. doi.org/10.1016/j.rse.2012.12.002.
Gebremedhin MA, Lubczynski MW, Maathuis BHP, Teka D. 2021. Novel approach to integrate daily satellite rainfall with in-situ rainfall, Upper Tekeze Basin, Ethiopia. Atmospheric Research. 248:1-15. doi.org/10.1016/j.atmosres.2020.105135.
Gheysouri M, Khalighi Sigaroodi S, Choubin B. 2023. Improve rainfall maps using Precipitation products of IMERG V06 Final satellite and interpolation methods. ECOPERSIA. 11(1):47-64. doi.org/ 20.1001.1.23222700.2023.11.1.5.5.
 Ghorbanian A, Mohammadzadeh A, Jamali S, Duan Z. 2022. Performance Evaluation of Six Gridded Precipitation Products throughout Iran Using Ground Observations over the Last Two Decades (2000–2020). Remote Sensing. 14(15):3783. doi.org/10.3390/rs14153783.
Ghaderpour E, Ben Abbes A, Rhif M, Pagiatakis SD, Farah IR. 2020. Non-stationary and unequally spaced NDVI time series analyses by the LSWAVE software. International Journal of Remote Sensing. 41(6):2374-2390. doi.org/10.1080/01431161.2019.1688419.
Golding BW. 2009. Uncertainty propagation in a London flood simulation. Journal of Flood Risk Management. 2(1):2-15. doi.org/10.1111/j.1753-318X.2008.01014.x.
Gourley JJ, Vieux BE. 2006. A method for identifying sources of model uncertainty in rainfall-runoff simulations. Journal of Hydrology. 327(1-2):68-80. doi.org/10.1016/j.jhydrol.2005.11.036.
Haberlandt U. 2007. Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event. Journal of Hydrology. 332(1-2):144–157. doi.org/10.1016/j.jhydrol.2006.06.028.
Hadiani O, Jahanbakhsh S, Rezai BM, Dinpajouh Y. 2011. The effect of topographic condition in evaluating the precipitation gradient in different elevation classes of mountainous region (case study: northern slope of centeral alborz mountain, mazandaran province). Journal of Sciences and Techniques in Natural Resources. 6(2):15-25. (In Persian).
Hosseini Moghari SM, Iraqinejad SH, Ebrahimi K. 2016. Evaluation of global rainfall bases and their application in drought monitoring-Case (Karkheh basin). Journal of Agricultural Meteorology. 102(2):14-26.
Kalehhouei M, Soltani A, Soltani A, Gholami L. 2018. Drought Zoning of Kermanshah Province Using CZI Index. Journal of Rainwater Catchment Systems. 6(1):1-10. (In Persian).
Kim C, Kim DH. 2020. Effects of rainfall spatial distribution on the relationship between rainfall spatiotemporal resolution and runoff prediction accuracy. Water. 12(3):846. doi.org/10.3390/w12030846.
Kim SN, Lee WK, Shin KI, Kafatos M, Seo DJ, Kwak HB. 2010. Comparison of spatial interpolation techniques for predicting climate factors in Korea. Forest Science and Technology. 6(2):97-109. doi.org/10.1080/21580103.2010.9671977.
Li M, Shao Q. 2010. An improved statistical approach to merge satellite rainfall estimates and raingauge data. Journal of Hydrology. 385(1-4):51-64. doi.org/10.1016/j.jhydrol.2010.01.023.
Li Z, Yang D, Hong Y. 2013. Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. Journal of Hydrology. 500:157-169. doi.org/10.1016/j.jhydrol.2013.07.023.
Lin S, Jing C, Chaplot V, Yu X, Zhang Z, Moore N, Wu J. 2010. Effect of DEM resolution on SWAT outputs of runoff, sediment and nutrients. Hydrology and Earth System Sciences Discussions. 7(4):4411-4435.
Lu S, Ten Veldhuis MC, Van Giesen N. 2020. A methodology for multiobjective evaluation of precipitation products for extreme weather (in a data-scarce environment). Journal of Hydrometeorology. 21(6):1223-1244. doi.org/10.1175/JHM-D-19-0157.1.
Ma Y, Hong Y, Chen Y, Yang Y, Tang G, Yao Y, Long D, Li C, Han Z, Liu R. 2018. Performance of optimally merged multisatellite precipitation products using the dynamic bayesian model averaging scheme over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres. 123(2):814-834. doi.org/10.1002/2017JD026648.
Manz B, Buytaert W, Zulkafli Z, Lavado W, Willems B, Robles LA, Rodríguez- S´anchez JP. 2016. High-resolution satellite-gauge merged precipitation climatologies of the Tropical Andes. Journal of Geophysical Research: Atmospheres. 121(3):1190-1207. doi.org/10.1002/2015JD023788.
Mastrantonas N, Bhattacharya B, Shibuo Y, Rasmy M, Espinoza-D´avalos G, Solomatine D. 2019. Evaluating the benefits of merging near-real-time satellite precipitation products: a case study in the Kinu Basin Region, Japan. Journal of Hydrometeorology. 20(6):1213-1233. doi.org/10.1175/JHM-D-18-0190.1.
Michele Di. 2008. Correlation between channel and hillslope lengths and its effects on the hydrologic response. Journal of Hydrology. 362(3-4):260-273. doi.org/10.1016/j.jhydrol.2008.08.022.
Modallaldoust S, BayatF, Soltani B, Soleimani K. 2008. Applying digital elevation model to interpolate precipitation. Journal of Applied Sciences. 8(8):1471-1478.
Nie S, Luo Y, Wu T, Shi X, Wang Z. 2015. A merging scheme for constructing daily precipitation analyses based on objective bias-correction and error estimation techniques. Journal of Geophysical Research: Atmospheres. 120(17):8671-8692. doi.org/10.1002/2015JD023347.
Rahman KU, Shang S, Shahid M, Wen Y, Khan Z. 2020. Application of a dynamic clustered bayesian model averaging (DCBA) algorithm for merging multisatellite precipitation products over Pakistan. Journal of Hydrometeorology. 21(1):17-37. doi.org/10.1175/JHM-D-19-0087.1.
Rezai T, Azizi Gh. 2008. Investigation of Spatial Patterns of Seasonal and Annual Precipitation in Western Iran. Physical Geography Research Quarterly. 40(65):93-108. (In Persian).
Sari Saraf B, Rajaei A, Masri Alamdari P. 2009. Investigating the relationship between precipitation and topography in the eastern and western slopes of Talash mountain region. Geography and Environmental Planning (Isfahan University Humanities Research Journal). 20(3):63-84. (In Persian). doi.org/10.22111/GDIJ.2023.44795.3497.
Schlögel R, Marchesini I, Alvioli M, Reichenbach P, Rossi M, Malet JP. 2018. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models. Geomorphology. 301:10–20. doi.org/10.1016/j.geomorph.2017.10.018.
Shen Y, Xiong A, Hong Y, Yu J, Pan Y, Chen Z, Saharia M. 2014. Uncertainty analysis of five satellite-based precipitation products and evaluation of three optimally merged multi-algorithm products over the Tibetan Plateau. International Journal of Remote Sensing. 35(19): 6843-6858. doi.org/10.1080/01431161.2014.960612.
Soltani Gerdefaramarzi S, Gheysouri M, Saberi A, Ghasemi M. 2020. Evaluation of Hydrological Softwares in Physiographic Parameters Extraction of Watershed. Journal of Environmental Science and Technology. 22(7):69-82. (In Persian).
Sorooshian S, AghaKouchak A, Arkin P, Eylander J, Foufoula-Georgiou E, Harmon R, Hendrickx JM, Imam B, Kuligowski R, Skahill B, Skofronick-Jackson G. 2011. Advanced concepts on remote sensing of precipitation at multiple scales. Bulletin of the American Meteorological Society. 92(10):1353-1357.
Taesombat W, Sriwongsitanon N. 2009. Areal rainfall estimation using spatial interpolation techniques. Science Asia. 35(3):268-275. doi: 10.2306/scienceasia1513-1874.2009.35.268.
Verdin A, Rajagopalan B, Kleiber W, Funk C. 2015. A Bayesian kriging approach for blending satellite and ground precipitation observations. Water Resources Research. 51(2):908-921. doi.org/10.1002/2014WR015963.
Wang Q, Guo Y, Li W, He J, Wu Z. 2019. Predictive modeling of landslide hazards inWen County, northwestern China based on information value, weights-of-evidence, and certainty factor. Geomatics, Natural Hazards and Risk. 10(1):820-835. doi.org/10.1080/19475705.2018.1549111.
Washington R, Harrison M, Conway D, Black E, Challinor A, Grimes D, Jones R, Morse A, Kay G, Todd M. 2006. African climate change: taking the shorter route. Bulletin of the American Meteorological Society. 87(10):1355-1366. doi.org/10.1175/BAMS-87-10-1355.
Xie P, Xiong AY. 2011. A conceptual model for constructing high‐resolution gauge‐satellite merged precipitation analyses. Journal of Geophysical Research: Atmospheres. 116(D21)1-20. doi.org/10.1029/2011JD016118.
Xu L, Chen N, Moradkhani H. Zhang X, Hu C. 2020. Improving global monthly and daily precipitation estimation by fusing gauge observations, remote sensing and reanalysis datasets. Water Resources Research. 56(3):1-20. doi.org/10.1029/2019WR026444.
Yang Z, Hsu K, Sorooshian S, Xu X, Braithwaite D, Zhang Y, Verbist KMJ. 2017. Merging high-resolution satellite-based precipitation fields and point-scale rain gauge measurements-A case study in Chile. Journal of Geophysical Research: Atmospheres. 122(10):5267-5284.
Zhang G, Tian G, Cai D, Bai R, Tong J. 2021. Merging radar and rain gauge data by using spatial–temporal local weighted linear regression kriging for quantitative precipitation estimation. Journal of Hydrology. 601:126612. doi.org/10.1016/j.jhydrol.2021.126612.
Zhang X, Tang Q. 2015. Combining satellite precipitation and long-term ground observations for hydrological monitoring in China. Journal of Geophysical Research: Atmospheres. 120(13):6426-6443. doi.org/10.1002/2015JD023400.
Zhao HG, Yang ST, Wang ZW, Zhou X, Luo Y, Wu LN. 2015. Evaluating the suitability of TRMM satellite rainfall data for hydrological simulation using a distributed 42 hydrological model in the Weihe River catchment in China. Journal of Geographical Sciences. 25:177-195.