تعیین تغییرات بیلان آب و انرژی در مقیاس‌های مختلف زمانی با استفاده از منحنی بودیکو در آبخیز نیر، اردبیل

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار، گروه مرتع و آبخیزداری، دانشکده کشاورزی و منابع‌طبیعی، عضو پژوهشکده مدیریت آب، دانشگاه محقق اردبیلی اردبیل، ایران

2 دانشجوی دکتری علوم و مهندسی آبخیزداری، گروه مرتع و آبخیزداری، دانشکده منابع‌طبیعی، دانشگاه ارومیه، ارومیه، ایران

3 دانش‌آموخته کارشناسی‌ارشد مهندسی آبخیزداری، دانشکده کشاورزی و منابع‌طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

10.22092/wmrj.2023.362093.1538

چکیده

مقدمه و هدف
فهم درست مؤلفه‌ها و تغییرات بیلان آب در مطالعه‌های آب‌شناختی و منابع آب اهمیت قابل توجهی دارد. تغییرات اقلیمی و فعالیت‌های انسانی بر تغییرات رواناب، مدیریت منابع آب و توسعه‌ی پایدار جامعه تأثیر‌گذار است. در این راستا، این پژوهش با هدف تعیین و مقایسه‌ی تغییرات بیلان آب با استفاده از منحنی بودیکو در استان اردبیل در آبخیز نیر، انجام شد.
مواد و روش‌ها
منحنی بودیکو برای آبخیز نیر در مقیاس‌های زمانی ماهانه (فصلی و سالانه) محاسبه شد. در این پژوهش، از داده‌های یک دوره‌ی آماری 33 ساله‌‌ی ایستگاه باران‌سنجی و تبخیرسنجی آبخیز نیر برای محاسبه‌ی میانگین بارش و تبخیر-تعرق بالقوه استفاده شد. منحنی بودیکو، یک رابطه‌ی غیرخطی است که با محدودیت‌های فیزیکی تقاضای آب جوی (PET> ET) و عرضه (P> ET) محدود می‌شود و شاخص خشکی در منحنی بودیکو تعادل بلندمدت آب را نشان می‌دهد.
نتایج و بحث
نتایج نشان داد که روند تغییرات جریان رود در مقیاس سالانه به‌شکل مستقیم با تغییرات مؤلفه‌های آب و هوایی ارتباط داشت. این در حالی بود که بر اساس داده‌های واقعی، فقط در تعدادی از فصل‌ها روند تغییر جریان از تغییر مؤلفه‌های اقلیمی تبعیت می‌کرد. هم‌چنین در سال‌های مطالعه‌شده، توزیع داده‌ها در منحنی بودیکو بیانگر آن بود که اندازه‌ی مصرف آب در آبخیز نیر از محدوده‌ی پیش‌بینی شده بر اساس منحنی بودیکو، به انرژی و تعادل آب، دچار انحراف شده است. بیشترین و میانگین و حداقل ET برای سال‌های بررسی‌شده به‌ترتیب 876/55، 431/85 و 277/88 به‌دست آمد. هم‌چنین بیشترین و میانگین و حداقل نسبت PET/ P به‌ترتیب 0/07، 0/05 و 0/02 بود. بیش‌تر سال‌های مطالعه‌شده داده‌های مشاهداتی روی منحنی بودیکو در محدوده‌ی محدودیت آب قرار داشتند، که در آن، اندازه‌ی مصرف آب مشاهده‌شده (AET/P) برابر با پیش‌بینی مصرف آب (PET/P) بود. بر اساس نتایج، تغییرات در AET/P در سال‌های (1360، 1362، 1368، 1373، 1386 و 1389) کم‌تر بود. بر اساس تغییرات در اندازه‌های PET/P و AET/P نسبت به منحنی بودیکو می‌توان در خصوص توانایی آبخیز در تنظیم AET قضاوت کرد.
نتیجه‌گیری و پیشنهادها
نتایج این پژوهش نشان داد که با افزایش دما و کاهش بارش، اندازه‌ی تبخیر-تعرق واقعی سالانه آبخیز افزایش یافت و منجر کاهش رواناب در آبخیز شد. این نتایج می‌تواند برای پیشنهاد‌ راهکارهای مدیریتی و سازگار با اقلیم در راستای استفاده‌ی بهینه از منابع آب به‌کارگرفته شود. سرانجام می‌توان گفت که اندازه‌ی تبخیر-تعرق بالقوه در آبخیز مطالعه‌شده از اندازه‌ی بارش بیش‌تر بود. نتایج این پژوهش می‌تواند برای مدیریت منابع آب با در نظر گرفتن محدودیت‌های تغییر اقلیم و فعالیت‌های انسانی به‌کارگرفته شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining Changes in Water and Energy Balance in Different Time Scales Using Budyko Curve in the Nir Watershed, Ardabil

نویسندگان [English]

  • Raoof Mostafazadeh 1
  • Nazila Alaei 2
  • Fatemeh Kateb 3
1 Associate Professor, Faculty of Agriculture and Natural Resources, Member of Water Management Research Center, University of Mohaghegh Ardabili, Ardabil, Iran
2 Ph.D. Student, Watershed Management Science and Engineering, Faculty of Natural Resources, Urmia University, Urmia, Iran
3 Former M.Sc. Student, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Introduction and Goal
In hydrological and water resources studies, the understanding of water balance components and changes holds great significance. Climate changes and human activities affect runoff changes, water resources management and sustainable development of society. In this regard, the current research was conducted with the aim of determining and comparing water balance changes using Budyko curve in Nir watershed, Ardabil province.
Materials and Methods
The Budyko curve was calculated for the Nair watershed in monthly, seasonal and annual time scales. In this study, the data of the rain gauge and evapotranspiration station of the watershed were also used in a statistical period of 33-years to calculate the average precipitation and evapotranspiration potential in the watershed. In the Budyko curve, the non-linear relationship that is limited by the physical limits of atmospheric water demand (PET>ET) and supply (P>ET) and the aridity index in the Budyko curve show the long-term water balance.
Results and Discussion
The results showed that, the trend of flow changes is directly related to the trend of weather components in annual time scale. Meanwhile, contrary to expectation, only in some seasons does the flow change process follow the change in climatic components. In addation, the Budyko curve analysis indicated that the amount of water consumption in the studied watershed regularly deviated from its predicted dependence on energy and water balance. The maximum, average and minimum ET for the studied years were obtained as 876.55, 431.85 and 277.88, respectively. Also, the maximum, average and minimum ratio of PET/P was 0.07, 0.05 and 0.02 respectively. In most of the years studied, the observational data aligned with the water limit range on the Budyko curve, indicating that the observed water consumption (AET/P) matched the predicted water consumption (PET/P). According to the results, the changes in AET/P are less in the years (1981, 1983, 1989, 1994, and 2010). Based on the changes in the values of PET/P and AET/P in the Budyko curve, the watershed ability to regulate AET can be considerable.
Conclusions and Suggestions
The results of this study indicated that with increased temperature and decreased precipitation, the annual actual evapotranspiration of the watershed increased, leading to a reduction in runoff. The results can be the basis for providing management solutions and adapting to the climate change in order to optimally use the available water resources. In general, it can be said that the amount of potential evaporation in the studied watershed is more than the amount of precipitation. The study's findings can provide a basis for managing water resources under the limitations of climate change and human abstractions.

کلیدواژه‌ها [English]

  • Potential evapo-transpiration
  • River flow discharge
  • Water resources management
  • Water balance
  • Climatic variables
Budyko, M. (1999). Climate catastrophes. Global and Planetary Change, 20(4), 281-288. https://doi.org/10.1016/S0921-8181(98)00062-9
Emamifar S, Davari K, Ansari H, Ghahraman B, Hosseini SM, Naseri M. 2018. Evaluation of DWB model and its correction for estimation of water balance components in Annual - watershed scale (Case study: Neishaboor and Rokh watershed). Iran-Water Resources Reserch, 14(2):94-104. (In Persian).
Esmali A, Ahmadi H, Tahmoures M. 2014. Quantity assessment of water erosion intensity using regional model of erosion and sediment yield (Case study: Nir watershed, Ardebil). Journal of Range and Watershed Management, 67(3):407-417. (In Persian). https://doi.org/10.22059/jrwm.2014.52830
Fang K, Shen Ch, Fisher JB, Niu J. 2016. Improving Budyko curve-based estimates of long-term water partitioning using hydrologic signatures from GRACE. Water Resources Research, 52(7):1-18. https://doi.org/10.1002/2016WR018748
Fathi MM, Awadallah AG, Abdelbaki AM, Haggag M. 2019. A new Budyko framework extension using time series SARIMAX model. Journal of Hydrology, 570:827-838. https://doi.org/10.1016/j.jhydrol.2019.01.037
Fu J, Wang W. 2019. On the lower bound of Budyko curve: The influence of precipitation seasonality. Journal of Hydrology, 570:292–303. https://doi.org/10.1016/j.jhydrol.2018.12.062
Fu, BP. 1981. On the calculation of the evaporation from land surface. Chin. Journal of the Atmospheric Sciences, 5(1):23–31.
Gerrits AMJ, Savenije HHG, Veling EJM, Pfister L. 2009. Analytical derivation of the Budyko curve based on rainfall characteristics and a simple evaporation model. Water Resources Research, 45(4):1-15. https://doi.org/10.1029/2008WR007308
Gong DY, Shi PJ. Wang JA. 2004. Daily precipitation changes in the semi arid region over northern China. Journal of Arid Environments, 59(4):771-784. https://doi.org/10.1016/j.jaridenv.2004.02.006
Greve P, Gudmundsson L, Orlowsky B, Seneviratne SI. 2016. A two-parameter Budyko function to represent conditions under which evapotranspiration exceeds precipitation. Hydrological Earth System Sciences, 20(6):2195–2205. https://doi.org/10.5194/hess-20-2195-2016
Jones J, Creed IF, Hatcher K, Warren R, Adams M, Benson M, Boose M, Brown M, Campbe J, Williams MW. 2012. Ecosystem Processes and Human Influences Regulate Streamflow Response to Climate Change at Long-Term Ecological Research Sites. Biological Sciences, 62(4):390-404. https://doi.org/10.1525/bio.2012.62.4.10
Lee TY, Chiu CC, Chen CJ, Lin CY, Shiah FK. 2023. Assessing future availability of water resources in Taiwan based on the Budyko framework. Ecological Indicators, 146:109808. https://doi.org/10.1016/j.ecolind.2022.109808
Liu J, Chen J, Xu J, Lin Y, Yuan Z, Zhou M. 2019. Attribution of RunoVariation in the Headwaters of the Yangtze River Based on the Budyko Hypothesis. International Journal of Environmental Research and Public Health, 16(14):2506. https://doi.org/10.3390/ijerph16142506
Mianabadi A, Alizadeh A, Sanaeinejad SH, Ghahraman B, Davary K. 2016. Prediction of Annual Evaporation Change in Dry Regions Using the Budyko-type framework (Case Study of Neishaboor-RokhWatershed). Journal of Irrigation and Drainage, 10(3):398-411. (In Persian)
Mianabadi A, Gerrits MC, Shirazi P, Ghahraman B, Alizadeh A. 2019. 1 A global Budyko model to partition evaporation into interception and transpiration. Journal Hydrological Earth System Sciences, 23(12):4983–5000. https://doi.org/10.5194/hess-23-4983-2019
Mostafazadeh R, Moradzadeh V, Alaei N, Hazbavi Z. 2022. Determining long-term memory using Hurst Index for precipitation and discharge time series of selected stations in Ardabil province. Water and Soil Resources Conservation, 11(2):113-131. (In Persian) https://doi.org/10.30495/wsrcj.2021.19217
Mostafazadeh R, Nasiri Khiavi A, Ghabelnezam E. (2023). Temporal changes and flow pattern analysis using Colwell indices in mountainous rivers. Environment, Development and Sustainability. pp. 1-18. https://doi.org/10.1007/s10668-023-03033-2
Nasiri Khiavi A, Faraji A, Mostafazadeh R. 2020. Streamflow Response to Rainfall Changes Using the Climate Elasticity Index in Some Watersheds of Ardabil Province. Hydrogeomorphology, 6(21):1-22. (In Persian). https://dorl.net/dor/20.1001.1.23833254.1398.6.21.1.6
Ning T, Zhou Sh, Chang F, Shen H, Li Z, Liu W. 2019. Interaction of vegetation, climate and topography on evapotranspiration modelling at different time scales within the Budyko framework. Agricultural and Forest Meteorology, 275:59–68. https://doi.org/10.1016/j.agrformet.2019.05.001
Sankarasubramanian A, Wang D, Archfield S, Reitz M, Vogel RM, Mazrooei A, Mukhopadhyay S. 2022. HESS Opinions: Beyond the long-term water balance: evolving Budyko's supply–demand framework for the Anthropocene towards a global synthesis of land-surface fluxes under natural and human-altered watersheds. Hydrology and Earth System Sciences, 24(4):1975-1984. https://doi.org/10.5194/hess-24-1975-2020
Sheikh V, Naderi M, Sadoddin A, Asadi Nalivan O, Keramatzadeh A, Abedi Tourani M, Nazari A. Quantifying the contributions of climate change and human interventions on streamflow alteration in the Hableroud Rbasin using the hydrological sensitivity analysis approach based on the Budyko hypothesis. Water and Soil Management and Modeling, 3(4), 241-259. (In Persian). https://doi.org/10.22098/mmws.2023.12114.1205
Talebi Khiavi H, Mostafazadeh R. 2021. Land use change dynamics assessment in the Khiavchai region, the hillside of Sabalan mountainous area. Arabian Journal of Geosciences, 14:1-15. https://doi.org/10.1007/s12517-021-08690-z
Trancoso R, Larsen JR, McAlpine C, McVicar TR, Phinn S. 2016. Linking the Budyko framework and the Dunne diagram. Journal of Hydrology, 535:581–597. https://doi.org/10.1016/j.jhydrol.2016.02.017
Wang D, Tang Y. 2014. A one-parameter Budyko model for water balance captures emergent behavior in darwinian hydrologic models. Geophys. Res. Lett, 41(13):4569–4577. https://doi.org/10.1002/2014GL060509
Wang W, Fu J. 2018. Global assessment of predictability of water availability: a bivariate probabilistic Budyko analysis. Journal of Hydrology, 557:643–650. https://doi.org/10.1016/j.jhydrol.2017.12.068
Zhang X, Dong Q, Costa V, Wang X. 2019. A hierarchical Bayesian model for decomposing the impacts of human activities and climate change on water resources in China. Science of the Total Environment, 665:836-847. https://doi.org/10.1016/j.scitotenv.2019.02.189
Zheng H, Zhang L, Zhu R, Liu C, Sato Y, Fukushima Y. 2009. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resources Research, 45(7):1–9. https://doi.org/10.1029/2007WR006665