تأثیر اقدام‌های آبخیزداری بر متغیرهای آب‌شناختی با استفاده از مدلSWAT در آبخیز کن

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری گروه مهندسی آبخیزداری، دانشکده منابع‌طبیعی، دانشگاه علوم کشاورزی و منابع‌طبیعی ساری، ساری، ایران

2 دانشیار گروه مهندسی آبخیزداری، دانشکده منابع‌طبیعی، دانشگاه علوم کشاورزی و منابع‌طبیعی ساری، ساری، ایران

3 استاد گروه مهندسی آبخیزداری، دانشکده منابع‌طبیعی، دانشگاه علوم کشاورزی و منابع‌طبیعی ساری، ساری، ایران

4 استاد گروه مهندسی آبخیزداری، دانشکده منابع‌طبیعی، دانشگاه تربیت مدرس، نور، ایران

10.22092/wmrj.2023.362356.1542

چکیده

مقدمه و هدف
در کشور اجرای اقدام‌های آبخیزداری، ارزیابی و بررسی تأثیرات فعالیت­ های انجام‌شده‌ی این طرح­ ها بر فرآیندهای حاکم بر آبخیز، ضروری است. حال آن که اساساً ارزیابی عملکرد اقدام‌های آبخیزداری به اندازه‌ی کافی در کشور انجام‌نشده است.
مواد و روش‌ها
این پژوهش در استان تهران در آبخیز کن با هدف شبیه‌سازی تأثیر اقدام‌های آبخیزداری بر متغیرهای آب‌شناختی، با استفاده از مدل SWAT انجام شد. از این رو، ابتدا اجرای اولیه مدل انجام شد و سپس واسنجی و اعتبارسنجی شد. در این پژوهش برای بهره‌گیری از دستورالعمل‌ها و توابع گوناگون هدف و نیز برای واسنجی و اعتبارسنجی مدل از نرم­افزارSWAT-CUP  استفاده شد. به‌منظور تعیین و مقایسه‌ی شرایط شبیه ­سازی با شرایط حاکم بر آبخیز از معیارهای ارزیابی مانند ضریب تبیین و ضریب کارآیی استفاده شد.
نتایج و بحث
نتایج پژوهش نشان داد که کارایی مدل SWAT برای شبیه‌سازی آب‌شناختی آبخیز مطالعه‌‍‌شده قابل قبول بود. بنابراین مقدار ضریب تبیین در مرحله‌ی واسنجی و اعتبارسنجی به ­ترتیب 0/69 و 0/86 بود. هم­چنین، مقدار شاخص نش-ساتکلیف در مرحله‌ی واسنجی و اعتبارسنجی به­ ترتیب 0/85 و 0/93 به‌دست آمد. سپس اقدام‌های آبخیزداری در سطح آبخیز مطالعه‌شده شبیه‌سازی شد. نتایج این شبیه‌سازی نشان داد که رواناب سطحی در عملیات آبخیزداری به­‌شکل بند توری‌سنگی، سنگی ملاتی، بانکت‌بندی و خشکه‌چین به ­ترتیب 25، 23، 21 و 11%  کاهش یافت. همچنین، اندازه‌ی آب در دسترس در عملیات آبخیزداری به­‌شکل بند توری‌سنگی، سنگی ملاتی، بانکت‌بندی و خشکه‌چین به­ ترتیب در مقایسه با شرایط اجرا نشدن این عملیات‌ها در سطح آبخیز 19، 21/3، 20/5 و 10/75 % بیشتر بود. بیش­ترین اندازه‌ی تغییر جریان جانبی نیز در شرایط اجرای عملیات سنگی ملاتی بود. هم­چنین اندازه‌ی تبخیر و تعرق با اجرای عملیات آبخیزداری بند توری‌سنگی، سنگی ملاتی، بانکت‌بندی و خشکه‌چین به ­ترتیب 20/19، 20/86، 19 و 10/87% افزایش یافت.
نتیجه‌گیری و پیشنهادها
بر پایه‌ی نتایج این پژوهش در آبخیز کن می‌توان با اجرای اقدام‌های آبخیزداری مزبور، برنامه‌های مدیریتی و زیستی احتمال رخداد سیل و خسارت‌های ناشی از آن را تا حد زیادی کاهش داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Watershed Practices on Hydrological Variables using SWAT Model in Kan Watershed

نویسندگان [English]

  • Mohammad Hossein Ghavimipanah 1
  • Leila Gholami 2
  • Ataollah Kavian 3
  • Seyed Hamid Reza Sadeghi 4
1 Ph.D. Student, Department of Watershed Management Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 Associate Professor, Department of Watershed Management Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
3 Professor, Department of Watershed Management Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
4 Professor, Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
چکیده [English]

Introduction and Goal
The implementation of watershed management practices in the country and the evaluation the conducted activities and effects investigation of these projects are essential on the governing processes at watershed. However, such an important approach has to be adequately considered.
Materials and Methods
Accordingly, the present study was planned with the simulation aim of the impact of watershed management practices on hydrological parameters using the SWAT model in the Kan Watershed in Tehran Province, Iran. Therefore, the first of the initial implementation of the model was carried out, and then it was calibrated and validated. In this research, SWAT-CUP software was used to usage of various instructions and objective functions and also to test and the model calibration and validation. In order to determination and comparison of the simulation conditions with the governing conditions on watershed applied the evaluation criteria such as the coefficient of explanation and the coefficient of efficiency.
Results and Discussion
The research results showed that the model efficiency was acceptable for the hydrological simulation of the studied watershed. So, the explanation coefficient for calibration and validation was with rates of 0.69 and 0.86 respectively. Also, the Nash-Sutcliffe index for the calibration and validation obtained with rates of 0.85 and 0.93, respectively. Then, watershed management practices simulated at the level of studied watershed. The simulated results showed that the surface runoff decreased with the practices of watershed management in the form of gabion, masonry check dam, counter trench and loose- stone check dam with the values of 25, 23, 21, and 11 percent, respectively. Also, the available water was more after the practices of watershed management in the form of gabion, masonry check dam, counter trench and loose- stone check dam with rates of 19.0, 21.3, 20.5 and 10.75 percent, respectively, compared to the absence conditions of these practices at the watershed level. Also, the maximum amount of flow changes observed in the practices conditions of masonry check dams. In addition, the evapotranspiration increased with implementation of gabion. masonry check dams, counter trench and loose- stone check dams with rates of 20.19, 20.86, 19.0 and 10.87 percent, respectively.
Conclusion and Suggestions
Based on the results of this research in the Kan watershed, the flood possibility and the flood damages can be reduced by practices of the watershed management, management and biological programs.

کلیدواژه‌ها [English]

  • Watershed Practices
  • Hydrologic Simulation
  • Soil Erosion
  • Soil and Water Assessment Tool
  • Hydrological Model
Abbaspour K, Yang CJ, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R. 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333 (2-4):413-430.
Abuhay W, Gashaw T, Tsegaye L. 2023. Assessing impacts of land use/land cover changes on the hydrology of Upper Gilgel Abbay watershed using the SWAT model. Journal of Agriculture and Food Research, 12:100-535.‏
Ahmadabadi E, Ghafarpour P. 2017. Evaluation of the effects of watershed management on the hydrogeomorphological characteristics of the Anbar basin by using the semi-distributed SWAT. Space Planning and Design, 21(2):35-55.
Anteneh Y, Alamirew T, Zeleke G, Kassawmar T. 2023. Modeling runoff-sediment influx responses to alternative BMP interventions in the Gojeb watershed, Ethiopia, using the SWAT hydrological model. Environmental Science and Pollution Research, 30(9):22816-22834.‏
Arnold JG, Srinivasan R, Muttiah RS, Williams JR. 1998. Large area hydrologic modeling and assessment, part I: model development. Journal of the American Water Resources Associate, 34(1):73-89.
Basu AS, Gill LW, Pilla F, Basu B. 2022. Assessment of variations in runoff due to landcover changes using the SWAT model in an Urban River in Dublin, Ireland. Sustainability, 14(1):534.‏
Bekiaris IG, Panagopoulos IN, Mimikou NA. 2005. Application of the SWAT model in the Ronnea catchment of Sweden. Global Journal, 3: 252-257.
Briak H, Moussadek R, Aboumaria K, Mrabet R. 2016. Assessing sediment yield in Kalaya gauged watershed (Northern Morocco) using GIS and SWAT model. International Soil and Water Conservation Research, 4(3):177-185.
Dolatabadi S, Mohamadian ME. 2013. Hydrological simulation of Firoozabad basin using SWAT model. Journal of Irrigation and Water Engineering, 14(29):48-38.
Duan Z, Song X, Liu J. 2009. Application of SWAT for sediment yield estimation in a mountainous agricultural basin. In Geoinformatics, 2009 17th International Conference on (pp. 1-5). IEEE.
Ghoraba SM. 2015. Hydrological modeling of the Simly Dam watershed (Pakistan) using GIS and SWAT model. Alexandria Engineering Journal, 54(3):583-594.‏
Golzari S, zareabyaneh H, delavar M, Mobargaei Dinan N. 2020. Performance of SWAT Model in Quantitative and Qualitative Simulation of Runoff and Watershed Protective Measures in Zarrinehrood Basin. Journal of Watershed Management Research, 11(22):111-120. (In Persian).
Goodarzi M, Motamed Vaziri B, Mir hoseini M. 2017. Assessment of IHACRES model in surface run-off simulation in climate change status: A case study Kan Basin. Iranian Journal of Watershed Management Science, 11(38):83-94. (In Persian).
Jang SS, Ahn SR, Kim SJ. 2017. Evaluation of executable best management practices in Haean highland agricultural catchment of South Korea using SWAT. Agricultural Water Management, 180: 224-234.
Kavian A, Mohammadi M, Gholami L, Rodrigo–comino J. 2018. Assessment of the spatiotemporal effects of land use changes on runoff and nitrate loads in the Talar River. Water, 10(445):1–19.‏
Mahzari S, Kiani F, Azimi M, Khormali F. 2016. Using SWAT Model to Determine Runoff, Sediment Yield and Nitrate Loss in Gorganrood Watershed, Iran. ECOPERSIA, 4(2):1359-1377.
Mehri S, Moradi HR, Mostafazadeh R. 2023. Simulation and determination of hydrological balance components in the upstream of Gheshlagh dam using SWAT model. Environment and Water Engineering, 9(4):485-495. (In Persian).
Mohammadivand MR, Araghinejad S, Ebrahimi K, Modaresi F. 2019. Performance evaluation of AWBM, Sacramento and SimHyd models in runoff simulation of the Amameh Watershed using automatic calibration optimization method of genetic algorithm. Iranian Journal of Soil and Water Research, 50(7):1759-1769. (In Persian).
Mtibaa S, Asano S. 2022. Hydrological evaluation of radar and satellite gauge-merged precipitation datasets using the SWAT model: Case of the Terauchi catchment in Japan. Journal of Hydrology: Regional Studies, 42:101-134.‏
Nikolic G, Spalević V, Curovic M, Khaledi Darvishan A, Skataric G, Pajic M, Kavian A, Tanaskovik V. 2019. Variability of soil erosion intensity due to vegetation cover changes: Case study of Orahovacka Rijeka, Montenegro. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(1):237-248.
Pyo J, Baek SS, Kim M, Park S, Lee H, Ra JS, Cho KH. 2017. Optimizing agricultural best management practices in a Lake Erie Watershed. JAWRA Journal of the American Water Resources Association, 53(6):1281-1292.
Sanchez GM, Nejadhashemi AP, Zhang Z, Marquart-Pyatt S, Habron G, Shortridge A. 2015. Linking watershed-scale stream health and socioeconomic indicators with spatial clustering and structural equation modeling. Environmental Modelling and Software, 70:113–127.
Sedaghat Kerdar A, Fatahi E. 2008. Drought early warning methods over Iran. Geography and Development, 6(11): 59-76. (In Persian).
Singh V, Karan SK, Singh C, Samadder SR. 2023. Assessment of the capability of SWAT model to predict surface runoff in open cast coal mining areas. Environmental Science and Pollution Research, pp. 1-11.‏
Teshager AD, Gassman PW, Secchi S, Schoof JT, Misgna G. 2016. Modeling agricultural watersheds with the soil and water assessment tool (SWAT): Calibration and validation with a novel procedure for spatially explicit hrus. Environmental management, 57(4):894-911.
Vilaysane B, Takara K, Luo P, Akkharath I, Duan W. 2015. Hydrological stream flow modelling for calibration and uncertainty analysis using SWAT model in the Xedone river basin, Lao PDR. Procedia Environmental Sciences, 28:380-390.
Wang X, Melesse AM. 2005. Evaluation of the SWAT model’s snowmelt hydrology in a northwestern Minnesota watershed. Transactions of the ASAE, 48(4):1-18.
Woldemariam G, Iguala A, Tekalign S, Reddy R. 2018. Spatial modeling of soil erosion risk and its implication for conservation planning: The case of the Gobele Watershed, East Hararghe Zone, Ethiopia. Land. 7(1):25.
Xing Z, Wang Y, Ji Y, Fu Q, Li H, Qu R. 2018. Health assessment and spatialvariability analysis of the Naolihe Basin using a water-based system. Ecological Indicators, 92:181–188.
Zarei ghorkhodi A, Shahnazari A, Mohammadi F. 2022. Evaluation of the effect of dams on runoff and sediment parameters using SWAT model (Case study: Tajan River Watershed, Mazandaran). Iranian Journal of Irrigation and Drainage, 16(2):294-307. (In Persian).
Zhang H, Wang B, Li Liu D, Zhang M, Leslie LM, Yu Q. 2020. Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. Journal of Hydrology, 585:124822.‏