مدل‌سازی تغییرات مکانی-زمانی تبخیر با استفاده از داده‌های تشتک تبخیر کلاس A (پیشنهاد رویکردی نوین به منظور استفاده در مدل‌های پویایی و توزیعی بارش- رواناب)

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مهندسی آبخیزداری، گروه احیاء مناطق خشک و کوهستانی، دانشکدة منابع‌طبیعی، دانشگاه تهران، تهران، ایران

2 استاد گروه احیاء مناطق خشک و کوهستانی، دانشکدة منابع‌طبیعی، دانشگاه تهران، تهران، ایران

3 دانشیار گروه احیاء مناطق خشک و کوهستانی، دانشکدة منابع‌طبیعی، دانشگاه تهران، تهران، ایران

4 استادیار گروه احیاء مناطق خشک و کوهستانی، دانشکدة منابع‌طبیعی، دانشگاه تهران، تهران، ایران

10.22092/wmrj.2023.362586.1544

چکیده

مقدمه و هدف
تبخیر یکی از سنجه‌های مهم آب‌شناسی است که در چرخة آب نقش مهمی دارد. این سنجه‌ افزون بر توزیع مکانی گوناگون، با داشتن توزیع بلندی سبب پیچیدگی مدل‌سازی‌های تبخیر شده است. هدف از این پژوهش، پیشنهاد یک رویکرد جدید برای مدل‌سازی تغییرات مکانی–زمانی تبخیر است تا بر اساس ویژگی پویایی و توزیعی آن بتوان در مدل‌های بارش–رواناب، استفاده شود.
مواد و روش‌ها
در این پژوهش از داده‌های ماهانة تبخیر (1400-1381) ایستگاه پایش تبخیر مارون که در آبخیز پسکوهک، در 27 کیلومتری غرب شیراز است، استفاده شد. همچنین از داده‌های سه ایستگاه پیرامون حوزه آبخیز پسکوهک، شامل ایستگاه‌های شیراز، قلات و دشت ارژن، استفاده شد. در ابتدا با استفاده از مدل وایازی و تعیین ارتباط میان تبخیر و بلندی از سطح دریا، نقشه‌های رستری تبخیر ماهانة منطقة مطالعه‌شده رسم شد. سپس، با استفاده از رویکرد پیشنهادی (استفاده از روش نسبت معادله‌ها)، مدل اولیه تغییرات مکانی– زمانی تبخیر تهیه شد. با توجه به ویژگی پویایی و تأثیرپذیری سنجة تبخیر، تأثیر عامل‌های مختلف بر شدت تبخیر، شبیه‌سازی و نقشه‌های رستری اولیه اصلاح شد. برای این منظور از ضریب‌های تصحیح که به‌شکل نقشه‌های رستری یا ضریب‌های عددی به‌دست آمده بود، استفاده شد. این ضریب‌ها شامل ضریب اصلاح شدت تبخیر ناشی از نسبت ژرفای آب در سطح هدف به ژرفای آب در تشتک تبخیر، تأثیر روزهای گوناگون سال در ضریب تبدیل تشتک و ضریب تصحیح تغییرات بلندی از سطح زمین بود. تمام مراحل کار، با کدنویسی در محیط SNAP و MATLAB انجام شد. سرانجام نتیجة‌ نهایی در محیط ArcGIS به‌دست آمد.
نتایج و بحث
نتایج این پژوهش نشان داد که با استفاده از مدل وایازی خطی و سنجة بلندی از سطح دریا، می‌توان با دقت زیاد (81/0 = R2 در دی ماه تا 99/0R2= در آبان و فروردین ماه)، توزیع مکانی تبخیر را به‌شکل یک شبکة منظم پیکسلی (100 متر مربعی) به‌دست آورد. همچنین، مدل نهایی توزیع مکانی–زمانی تبخیر نشان داد که در برخی نقاط مطالعه‌شده (پیکسل‌ها)، میان نتایج مدل اولیه و مدل نهایی تبخیر تفاوت قابل‌توجهی وجود داشت. این موضوع لزوم استفاده از ضریب‌های اصلاحی را بیشتر آشکار کرد.
نتیجه‌گیری و پیشنهادها
در این پژوهش با استفاده از رویکرد پیشنهادشده می‌توان در منطقة مزبور، توزیع مکانی- زمانی تبخیر را در گام‌های زمانی متناظر با گروه زمانی داده‌های موجود در ایستگاه‌های پایش تبخیر، مدل کرد. پیشنهاد می‌شود در شرایط گوناگون اقلیمی و پستی‌بلندی از این مدل استفاده شود و نتایج آن بررسی شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling Spatio-Temporal Changes in Evaporation using Class a Pan Evaporation Data: Presenting a Novel Approach for Use in Dynamic and Distributed Models of Rainfall-Runoff

نویسندگان [English]

  • Amir Hossein Parsamehr 1
  • Ali Salajegheh 2
  • Shahram Khalighi Sigaroodi 3
  • Khaled Ahmadaali 4
1 Ph.D., Student of Watershed Science and engineering, Department of Reclamation of Arid and Mountainous Region, Faculty of Natural Resources, University of Tehran, Tehran, Iran
2 Professor, Department of Reclamation of Arid and Mountainous Region, Faculty of Natural Resources, University of Tehran, Tehran, Iran
3 Associate Professor, Department of Reclamation of Arid and Mountainous Region, Faculty of Natural Resources, University of Tehran, Tehran, Iran
4 Assistant Professor, Department of Reclamation of Arid and Mountainous Region, Faculty of Natural Resources, University of Tehran, Tehran, Iran
چکیده [English]

Introduction and Goal
Evaporation is one of the important parameters in hydrology that plays a significant role in the water cycle. This parameter, in addition to various spatial distributions, with having altitude distribution causes the complexity of evaporation modeling The aim of this research is to present a new approach for spatio-temporal modeling of evaporation changes, which can be used in rain-runoff models.
Materials and Methods
In order to carry out this research, monthly evaporation data over a 20-years period (2002-2021) were used from the Maroun evaporation monitoring station located in the Paskouhak catchment, 27 km west of Shiraz, as well as three stations surrounding Paskouhak catchment including Shiraz, Ghalat, and Dasht Arjan stations. Initially, by using regression modeling and determining the relationship between evaporation and elevation above sea level for each month, monthly evaporation raster maps were drawn for the study area. Then, using the proposed approach of using the ratio equations method, the initial spatio-temporal model of evaporation changes was prepared. Due to the dynamic nature and sensitivity of the evaporation parameter, the impact of various factors on the intensity of evaporation was simulated and the initial raster maps were corrected to a large extent. For this purpose, correction coefficients obtained in the form of raster maps or numerical coefficients were used. These coefficients included the correction coefficient of evaporation intensity due to the ratio of water depth at the target surface to the water depth in the evaporation pan, the effect of different days of the year on the conversion coefficient of the evaporation pan, and the correction coefficient based on changes in elevation from the ground surface. All stages of the research were performed in the SNAP and MATLAB software. Finally, the final result was obtained in the ArcGIS software.
Results and Discussion
The results showed that using the linear regression model and elevation parameters above sea level, it is possible to obtain the spatial distribution of evaporation with high accuracy (R2=0.81 in December and R2=0.99 in March and October) in the form of a regular pixel grid (in this study 100 m2). In addition, the final spatio-temporal distribution model of evaporation showed that there is a noticeable difference between the results of the initial and the final evaporation models in some areas of the study region (pixels). This highlights the need for more corrective coefficients.
Conclusion and Suggestions
In this study, using the proposed approach, it is possible to model the spatiotemporal distribution of evaporation in the study area at time steps corresponding to the time series of data available at the evaporation monitoring stations. It is recommended to apply this model under various climatic and topographic conditions and to evaluate its results.

کلیدواژه‌ها [English]

  • Class A Pan Evaporation
  • Correction Coefficient
  • Evaporation modelling
  • Paskouhak catchment

Abd‐Elhamid HF, Ahmed A, Zeleňáková M, Vranayová Z, Fathy I. 2021. Reservoir management by reducing evaporation using floating photovoltaic system: A case study of Lake Nasser. Egypt. Water, 13(6): 769-787.  https://doi.org/10.3390/w13060769

Aghili S.R, Boroomand Nasab S, Kaheh M. 2012. Application of fuzzy modeling based on clustering via c-mean for estimation of pan evaporation (Case study: Khuzestan Province). Journal of Water and Soil Conservation (Journal of Agricultural Sciences and Natural Resources), 19(2): 81–98. (In Persian).

Ahmadi H, Fallahghalhary Q, Shaemi A. 2016. Estimating and evaluating the trends of annual reference evapotranspiration based on influential climatic parameters in the North East of Iran. Water and Soil Science, 26(3-2): 257-269.

Alizadeh A. 2014. Water, soil and plant, relationship. 14th publication, Imam Reza Publication, Mashhad, Iran, 470 p. (In Persian).

Almedeij J. 2012. Modeling pan evaporation for Kuwait by multiple linear regressions. The Scientific World Journal, pp. 1–9. doi: 10.1100/2012/574742

Amin S, Ghafuri Roozbahani AM. 2002. Roodzard representative watershed surface runoff and evapotranspiration simulation using Stanford-IV Model. Journal of Water and Soil Science, 6 (3):113. (In Persian).
Bayazit Y, Bakiş R, Koç C. 2016. Mapping distribution of precipitation, temperature and evaporation in Seydisuyu Basin with the help of distance related estimation methods. Journal of Geographic Information System, 8(2): 224-237. doi10.4236/jgis.2016.82020

Chu CR, Li MH, Chang YF, Liu TC, Chen YY. 2012. Wind-induced splash in class A evaporation pan. Journal of Geophysical Research, 117(D11): 1–7.  https://doi.org/10.1029/2011JD016848

Chu CR, Li MH, Chen YY, Kuo YH. 2010. A wind tunnel experiment on the evaporation rate of class A evaporation pan. Journal of Hydrology, 381(3–4): 221–224. https://doi.org/10.1016/j.jhydrol.2009.11.044

Daryaei A, Sohrabi H, Atzberger C, Immitzer M. 2021. Mapping vegetation in riparian areas using pixel-ased and object-based classification of Sentinel-2 multi-temporal imagery. Iranian Journal of Remote Sensing and GIS, 13(3): 19-32.

 Doi: 10.52547/GISJ.13.3.19

Hu Z, Wang G, Sun X, Zhu M, Song C, Huang K, Chen X. 2018. Spatial‐temporal patterns of evapotranspiration along an elevation gradient on Mount Gongga, Southwest China. Water Resources Research. 54(6):4180-4192.

Irmak S, Haman DZ, Jones JW. 2002. Evaluation of class A pancoefficients for estimating reference evapotranspiration in humid location. Journal of Irrigation Drainage Engineering, 128(3): 153–159.

 https://doi.org/10.1061/(ASCE)0733-9437(2002)128:3(153)

Jafari M, Dinpashoh Y. 2019. Derivation of regression models for pan evaporation estimation, Environmental Resources Research, 7(1): 29–42. (In Persian).

Khoshhal Jahromi F, Zand Parsa Sh. 2015. Monthly evaporation zooning of pan evaporation in Fars Province using inverse distance weighting method (Idw) and regression based on digital elevation model (Dem). 3th National Conference on Agriculture and Sustainable Natural Resources, 14 June, Tehran.

Klaassen W, 2001. Evaporation from rain-wetted forest in relation to canopy wetness, canopy cover, and net radiation. Water Resources Research, 37(12):3227-3236. https://doi.org/10.1029/2001WR000480

Ladlani I, Hauichi L, Dhemili L, Heddem S, Blouze Kh. 2013. Estimation of daily reference evapotranspiration in the north of algeria using adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) models: A comparative study. Arabian Journal for Science and Engineering, 39(3): 59595969. 

Lawrimore JH, Peterson TC. 2000. Pan evaporation trends in dry and humid regions of the United States. Journal of Hydrometeorology, 1(6): 543–546. DOI: https://doi.org/10.1175/1525-7541(2000)001<0543:PETIDA>2.0.CO;2

Liu B, Xu M, Henderson M, Gong W. 2004. A spatial analysis of pan evaporation trends in China, 1955–2000. Journal of Geophysical Research, 109, (D15102):19.

Lu X, Ju Y, Wu L, Fan J, Zhang F, Li Z. Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models. Journal of Hydrology. 2018 Nov 1;566:668-84. https://doi.org/10.1016/j.jhydrol.2018.09.055

Magliano PN, Whitworth-Hulse JI, Cid FD, Leporati JL, Van Stan JT, Jobbágy EG. 2022. Global rainfall partitioning by dry land vegetation: Developing general empirical models. Journal of Hydrology, 607, 1-8. https://doi.org/10.1016/j.jhydrol.2022.127540

Malik A, Kumar A, Kisi O. 2017. Monthly pan-evaporation estimation in Indian central Himalayas using different heuristic approaches and climate based models. Computers and Electronics in Agriculture, 143: 302313. https://doi.org/10.1016/j.compag.2017.11.008

Malik A, Kumar A. 2015. Pan evaporation simulation based on daily meteorological data using soft computing techniques and multiple linear regression. Water Resources Management, 29: 1859–1872. https://doi.org/10.1007/s11269-015-0915-0

MiKlanek P. 1996. Estimation of mean evaporation patterns with respect to elevation. International Conference on Ecohydrology of High Mountain Area, pp. 285–290.

Patle GT, Chettri M, Jhajharia D. 2020. Monthly pan evaporation modeling using multiple linear regression and artificial neural network techniques. Water Supply, 20 (3): 800–808. doi: 10.2166/ws.2019.189

Poormohammadi S, Malekinezhad H, Rahimian M. 2010. Investigating the role of physiographical factors on temperature-related parameters affecting evapotranspiration (Case study: Yazd Province). Journal of Arid Biome, 1(2): 9–19. (In Persian).

Rafahi HGh. 2001. Wind erosion and conservation. 2th Publication, Tehran University Publication, Tehran, Iran, 320 p. (In Persian).

Sabzevari T, Rezaeian MR. 2012. Final report on: Estimation of ungagged watershed flood by using geomorphologic instaneous unit hydrograph method. Fars Regional Water Authority, pp. 1-92. (In Persian).

Sattari MT. Ahmadifar V,  Delirhasannia R, Apaydín H. 2021. Estimation of the pan evaporation coefficient in cold and dry climate conditions via the M5 regression tree model. Atmósfera, 34(3): 289-300. https://doi.org/10.20937/atm.52777 

Wheater HS, Jakeman AJ, Beven KJ. 1993. Progress and direction in rainfall-runoff modeling, proceeding of international congress on modeling and simulation, December 6-10, University of Western Australia.
Willgoose GR. 1994. A physical explanation for an observed area sleep-evaluation relationship for catchments with declining relief. Water Resource Research, 30(2): 151159. DOI:10.1029/93WR01810
Wood MJ, Sutherland AJ. 1971. Evaluation of digital catchment model on New Zealand Catchment. Journal of Hydrology, 9(2): 325335.
Yaxshiboyev RE, Gaybullayev EE, Husanov UA, Ochilov TD. 2021. Forecasting groundwater evaporation using multiple linear regression. Galaxy International Interdisciplinary Research Journal, 9(12): 1101–1107.