بررسی و شناسایی سنگفرش های بیابانی در شهرستان سمنان با استفاده از تصویرهای سنجندة ETM+

نوع مقاله : پژوهشی

نویسندگان

1 کارشناس ارشد گروه بیابان زدایی دانشکدة کویرشناسی، دانشگاه سمنان، سمنان، ایران

2 استادیار گروه مدیریت مناطق خشک و بیابانی، دانشکدة کویرشناسی، دانشگاه سمنان، سمنان، ایران

3 استادیار گروه بیابان زدایی، دانشکدة کویرشناسی، دانشگاه سمنان، سمنان، ایران

4 دانشیار پژوهشکدة حفاظت خاک و آبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

10.22092/wmrj.2024.365469.1581

چکیده

مقدمه و هدف
فرآیند شناسایی شکل‌‌های زمین‌ موضوعی است، که به‌وسیلة بسیاری از پژوهشگران بررسی‌شده است. تمام تعریف‌های زمین‌ریخت‌شناختی مبتنی بر مطالعه و شناسایی شکل‌‌های زمین­ است. شناخت شکل‌‌های زمین‌ و نحوة پراکنش آنها از نیازهای اساسی علم زمین‌ریخت‌شناختی کاربردی و دیگر علوم محیطی است. در این راستا، فناوری سنجش از دور به‌دلیل تولید تصویرهای ماهواره‌ای با وضوح زیاد فضایی و طیفی، می‌تواند ابزار ارزشمندی برای شناسایی و طبقه‌بندی شکل‌‌های زمین باشد. سنگ‌فرش بیابان، یکی از مهم­ترین شکل‌‌ زمین­ های مناطق خشک و بیابانی است. تهیة نقشة سنگ‌فرش­ ها و انواع آنها، مبنایی برای ارزیابی منطقه از نظر ساختاری و ویژگی‌های زمین‌ریخت‌شناختی فراهم می‌آورد، که در زمینة بسیاری از مسائل مدیریت و برنامه­ ریزی محیطی سودمند است و می­ تواند به‌عنوان الگویی برای مناطق مشابه به‌کار رود. در این پژوهش، با استفاده از داده­ های سنجندة ETM+ و بر اساس معیارهای مدنظر، شناسایی و طبقه‌بندی ویژگی­ های سنگ‌فرش­ های بیابانی شهرستان سمنان انجام شد.
مواد و روش ها
منطقة مطالعه‌شده با مساحت 47645/98 هکتار، در شهرستان سمنان است. منطقه دارای مختصات جغرافیایی ʹ28˚53 تا ʹ43˚53 طول شرقی و ʹ20˚35 تا ʹ40˚35 عرض شمالی است. هدف این پژوهش بررسی، جداسازی و شناسایی طبقات سنگ‌فرش بیابانی به‌عنوان نوعی از شکل زمین‌های بیابانی با استفاده از روش سنجش از دور و تصویرهای ماهواره‌ای لندست ETM+  در جنوب سمنان بود. ازاین‌رو، با بررسی میدانی و نمونه ­برداری از محدودة مطالعه‌شده، درصد تراکم پوشش سنگ‌فرش بیابانی اندازه ­گیری و موقعیت هر نمونه با GPS ثبت شد. برای طبقه‌بندی سنگ‌فرش ­های بیابانی در محیط‌های نرم‌افزار Envi 4.5 و IDRISI Selva، از ماشین بردار پشتیبان، شبکة عصبی، نقشة زاویه طیفی، واگرایی اطلاعات طیفی و آرت‌مپ فازی استفاده شد. سپس، صحت هر طبقه ­بندی، با استفاده از ضریب‌های صحت کامل، کاپا، صحت کاربر و صحت تولیدکننده با نمونه ­های تعلیمی مقایسه شد. سرانجام، نقشة پهنه ­بندی مکانی هر روش در محیط نرم­افزار  ArcGIS 10.2رسم شد.
نتایج و بحث
در این پژوهش، بهترین ترکیب نواری برای تشخیص و جداسازی سنگ‌فرش ­های بیابانی جنوب سمنان، ترکیب باند 6-4-3 با عامل شاخص مطلوب 71/45 (OIF)  بود، که در نوار مادون قرمز و مرئی میانی (VNIR + TIR) بود. بر اساس ضریب کاپا، روش­ های ماشین بردار پشتیبان (85/05)، آرت‌مپ فازی (81/44)، شبکة عصبی (55/17)، نقشة زاویه طیفی (53/89) و واگرایی اطلاعات طیفی (50/22)، به‌ترتیب بیشترین توانایی را در جداسازی طیفی طبقات گوناگون سنگ‌فرش بیابان جنوب سمنان داشتند. روش ­های طبقه­ بندی ماشین بردار پشتیبان و آرت‌مپ فازی، به‌ترتیب بیشترین ضریب‌های کاپا برای طبقات را کسب کردند و کمترین ضریب‌های کاپا و صحت کامل نیز، به‌ترتیب در روش ­های شبکة عصبی، نقشة زاویه طیفی و واگرایی اطلاعات طیفی بود. با توجه به این که طبقات، باندها و دیگر شرایط استفاده‌شده برای تمام روش ­ها یکسان بود، ازاین‌رو، اختلاف موجود در صحت، فقط به دستورالعمل ­های محاسبه‌ای روش ­ها بستگی داشت.
نتیجه‌گیری و پیشنهادها
فناوری سنجش از دور به‌دلیل تولید تصویرهای ماهواره‌ای با وضوح زیاد فضایی و طیفی، می‌تواند ابزار ارزشمندی برای شناسایی و طبقه‌بندی شکل‌‌های زمین باشد. تهیة نقشة سنگ‌فرش ­های بیابانی و انواع آنها، مبنایی برای ارزیابی منطقه از نظر ویژگی­ های ساختاری و زمین‌ریخت‌شناختی است، که می­ تواند در زمینة بسیاری از مسائل مدیریت و برنامه ­ریزی محیطی سودمند ­باشد. ازاین‌رو پیشنهاد می­ شود، از دیگر روش ­های طبقه بندی مبتنی بر برشی­ گرا بودن، روش­ های ترکیبی، فرکانس پوششی، تصویرهای سنجنده­ های با قدرت جداسازی مکانی و طیفی بهتر و لحاظ­کردن خصوصیاتی همچون قطر ذرات استفاده شود، تا در تهیة نقشه­ های طبقات سنگ‌فرش بیابانی اثربخش باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation and Identification of Desert Pavements in Semnan Township using Images of the ETM+ Sensor

نویسندگان [English]

  • Harir Sohrabi 1
  • Haydeh Ara 2
  • Mohammadkia Kianian 3
  • Amin Salehpour Jam 4
1 M.Sc. Graduate, Combat Desertification Department, Desert Studies Faculty, Semnan University, Semnan, Iran
2 Assistant Professor, Arid Land Management Department, Desert Studies Faculty, Semnan University, Semnan, Iran
3 Assistant Professor, Combat Desertification Department, Desert Studies Faculty, Semnan University, Semnan, Iran
4 Associate Professor, Soil Conservation and Watershed Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

Introduction and Goal
The process of identifying landforms is a subject that has been studied by many researchers. All geomorphological definitions are based on the study and identification of landforms. Understanding landforms and their distribution is a fundamental need of applied geomorphology and other environmental sciences. In this regard, remote sensing technology, due to the production of satellite images with high spatial and spectral resolution, can be a valuable tool for identifying and classifying landforms. Desert pavement is one of the most important landforms in arid and desert regions. Mapping pavements and their types provides a basis for evaluating the region in terms of its structural and geomorphological characteristics, which is useful in many environmental management and planning issues and can be used as a model for similar regions. In this research, using ETM+ sensor data and based on the considered criteria, the characteristics of desert pavements in Semnan township were identified and classified.
Materials and Methods
The study area, with an area of ​​47645.98 hectares, is located in Semnan township. The geographical coordinates of the region are 28˚53¢ to 43˚53¢ east longitude and 20˚35¢ to 40˚35¢ north latitude. The aim of this study was to investigate, separate, and identify desert pavement classes as a type of desert landform using remote sensing and Landsat ETM+ satellite images in southern Semnan. Therefore, by conducting field surveys and sampling of the study area, the percentage of desert pavement cover density was measured and the location of each sample was recorded with GPS. Support vector machines, neural networks, spectral angle maps, spectral information divergence, and fuzzy artmaps were used to classify desert pavements in Envi 4.5 and IDRISI Selva software environments. Then, the accuracy of each classification of each method was compared with the training samples using the coefficients of complete accuracy, kappa, user accuracy, and producer accuracy. Finally, the spatial zoning map of each method was drawn in the Arc GIS 10.2 software environment.
Results and discussion
In this study, the best band combination for detecting and separating desert pavements in southern Semnan was the 6-4-3 band combination with an optimal index factor of 45.71 (OIF), which was in the mid-infrared and visible bands (VNIR + TIR). Based on the kappa coefficient, the support vector machine (85.05), fuzzy artmap (81.44), neural network (55.17), spectral angle map (53.89), and spectral information divergence (50.22) methods had the highest ability in spectral separation of different classes of desert pavements in southern Semnan, respectively. The support vector machine and fuzzy artmap classification methods obtained the highest kappa coefficients for the classes, respectively, and the lowest kappa coefficients and complete accuracy were obtained in the neural network, spectral angle map, and spectral information divergence methods, respectively. Since the classes, bands, and other conditions used were the same for all methods, the difference in accuracy depended only on the calculation instructions of the methods.
Conclusions and suggestions
Remote sensing technology, due to the production of satellite images with high spatial and spectral resolution, can be a valuable tool for identifying and classifying landforms. Preparing a map of desert pavements and their types is a basis for evaluating the region in terms of structural and geomorphological characteristics, which can be useful in many environmental management and planning issues. Therefore, it is suggested that other classification methods based on shear orientation, combined methods, frequency coverage, images from sensors with better spatial and spectral resolution, and considering characteristics such as particle diameter be used to be effective in preparing maps of desert pavement layers.

کلیدواژه‌ها [English]

  • Desert pavement
  • Fuzzy Art map
  • Semnan
  • Sensor ETM+
  • Support Vector Machine
Adelsberger K, Smith R, Jennifer R. 2009. Desert pavement development and landscape stability on the Eastern Libyan Plateau, Egypt. Geomorphology, 107 (3-4): 178-194. https://doi.org/10.1016/j.geomorph.2008.12.005.
Ahmadpour A, Soleimani K, Shokri M, Ghorbani J. 2011. Comparison of three common methods in supervised classification of satellite data for vegetation studies. Journal of Applied RS and GIS Techniques in Natural Resource Science, 5 (3): 77-89.
Al-Ahmadi FS, Hames AS. 2009. Comparison of four classification methods to extract land use and land cover from raw satellite images for some remote arid areas, Kingdom of Saudi Arabia. JKAU, Earth Science, 20 (1): 167-191. http://dx.doi.org/10.4197/Ear.20-1.9.
Alavipanah SK. 2005. Application of remote sensing in earth sciences, Tehran University, 268 p. (In Persian).
Alavipanah SK. 2000. Evaluating the performance of Landsat TM satellite spectral bands in studies of Iranian deserts, Journal of Natural Resources of Iran, 53 (1): 67-78. (In Persian).
Amini S, Saber M, Rabiei-Dastjerdi H, Homayouni S. 2022. Urban land use and land cover change analysis using random forest classification of landsat time series. Remote Sensing, 14 (11): 1-23. 10.3390/rs14112654.

Arkhi S. 2014. Comparing accuracy of artificial neural network, Support Vector Machine and maximum likelihood Algorithms for land use classification (Case study: Dashat Abbas arid region, Ilam Province, Grazing magazine). 1(2): 30-43. (In Persian).

Brian WS, Qi C, Michael B. 2011. A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Applied Geography, 31(2): 525-532. https://doi.org/10.1016/j.apgeog.2010.11.007.
Cengiz O, Sener E, Yagmurlu F. 2006. A satellite image approach to the study of lineaments, circular structures and regional geology in the Golcuk Crater district and its environs (Isparta, SW Turkey). Journal of Asian Earth Sciences, 27 (2): 155-163.  https://doi.org/10.1016/j.jseaes.2005.02.005.
Chander G, Markham BL, Helder DL. 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5): 893-903.
Chen J, Zhu X, Vogelmann J. E, Gao F, Jin S. 2011. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sensing of Environment, 115(4): 1053-1064. https://doi.org/10.1016/j.rse.2010.12.010.
Debdip B. 2013. Optimum index factor (OIF) for Landsat data: A csase study on Barast town, west Bengal, INDIA. International Journal of Remote Sensing and Geoscience (IJRSG), 2 (5):10-17.
Dixon B, Candade N. 2008. Multispectral land use classification using neural networks and support vector machines: one or the other, or both. International Journal of Remote Sensing, 29(4): 1185-1206. https://doi.org/10.1080/01431160701294661.
Fatemi, SB, Rezaei, Y. 2005. Basics of Remote Sensing, Azadeh Publications, 265 p.
Fathizad H, Fallah Shamsi R, Mahdavi A, Arkhi S. 2015. Comparison of two classification methods of maximum probability and artificial neural network of fuzzy Art map in making Range land cover maps (case study: Range land area of Doviraj area, Dehloran). Iranian Journal of Range and Desert Research, 22 (1): 59-72. https://doi.org/10.22092/ijrdr.2015.13223.
Foody GM. 2004. Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering and Remote Sensing, 70 (5): 627–633. http://dx.doi.org/10.14358/PERS.70.5.627.
FriedI Mark A, Woodcock Curtis E, Olofsson P, Zhu Z, Loveland T, Stanimirova R, Arevalo P, Bullock E, Hu KT, Frimpong Bernard F, Koranteng A, Atta-Darkwa T, Junior Opoku F, Zawiła-Niedźwiecki T. 2023. Land cover changes utilising Landsat Satellite imageries for the Kumasi Metropolis and Its Adjoining Municipalities in Ghana (1986–2022). Sensors, 23 (5): 1-20. 10.3390/s23052644.
Ghanbari A, Feizizadeh B, Ayyed AM. 2023. Evaluation of land use changes with an emphasis on the water scarcity impacts and using remote sensing and GIS (Case study: Babylon Province, Iraq), 3 (7): 120-144. 10.22034/rsgi.2024.57669.1054. (In Persian).
Ghazaie H, Azizi Z, Aghamohammadi H. 2023. Analysis of satellite plant spectral indices in the detection of health stress in pistachio orchards, Pistachio Science and Technology. 7 (13): 21-37. (In Persian).
Hussain S, Lu L, Mubeen M, Nasim W, Karuppannan S, Fahad Sh, Tariq A, Mousa BG, Mumtaz F, Aslam M. 2022. Spatiotemporal Variation in Land Use Land Cover in the Response to Local Climate Change Using Multispectral Remote Sensing Data. Land, 11 (5): 1-19. https://doi.org/10.3390/land11050595.
Jensen JR. 2011. Introductory digital image processing: a remote sensing prospective. Prentice-Hall, series in geographic information science, PP: 1-164.
Kaviani Ahangar S, Mahdavi R, Zehtabian G, Gholami H, Chapagain A K. 2024. Monitoring of vegetation and land use changes process using Landsat data (Case study: Sarvestan Plain). Applied researches in Geographical Sciences. 24 (72): 327-340. http://dx.doi.org/10.52547/jgs.24.72.327.
Kianian M.K. 2014. Studying surface properties of desert pavements and their relation to soil properties and plant growth in Hajaligholi playa, Iran. Arabian Journal of Geosciences, 7(1):1457–1461. https://doi.org/10.1007/s12517-012-0738-8.
Luo J, Wei YD. 2009. Modeling spatial variations of urban growth patterns in Chinese cities: the case of Nanjing. Landscape and Urban Planning, 91(2): 51-64. https://doi.org/10.1016/j.landurbplan.2008.11.010.
Mokhtari MH, Najafi A. 2015. Comparison of support vector machine and artificial neural network classification methods in extracting land uses from Landsat TM satellite images, Journal of Agricultural Sciences and Techniques and Natural Resources, Water and Soil Sciences, 19 (72): 35-45. (In Persian).
Nasiri A. 1997. Evaluation of several spatial and spectral classification algorithms in the preparation of land use and land cover maps from remote sensing data, Master's thesis in remote sensing, Tarbiat Modares University. 97 p. (In Persian).
 
Niazi Y, Akhsati MR, Malekinejad H, Hosseini Z, Morshedi J. 2010. Comparison of two methods of maximum likelihood classification and artificial neural network in the extraction of land use map, a case study, Ilam Dam Basin, Journal of Geography and Development, 8 (20): 119-132. (In Persian). https://doi.org/10.22111/gdij.2010.633.
Potter Ch. 2016. Mapping changes in desert pavement surfaces of the lower Colorado Desert of southern California using Landsat time series analysis. International Journal of Advanced Remote Sensing and GIS, 5 (6): 1747-1754. https://dx.doi.org/doi:10.23953/cloud.ijarsg.57.
Qaid Ali M, Basavarajappa HT. 2008. Application of optimum index factor technique to Landsat-7 Data for geological mapping of north east of Hajjah, Yemen. American-Eurasian Journal of Scientific Research 3 (1): 84-91. Corpus ID: 55355421.
Rezaei Moghadam MH, Saghafi M. 2006.  The research on the geomorphologic evaluation of Kahak Playa in south Khorasan Province based on using satellite images and fuzzy logic methods, Journal of Geography and Development, 4 (8): 43-60. (In Persian).
Sarmasti N, Fathi MH, Ayase F, Bigipour Motlaq F, Suzandeh F. 2013. The application of the optimal index factor technique of ETM Landsat 7 data in the evaluation of Kashan salt crusts. The second international conference on environmental hazards. pp. 1-13. (In Persian).
Shayan S, Malamhar Alizadeh, F, Jannati M. 2006. Remotely sensed data efficiency on landform maps production and its role in environmental planning: A case study of Semnan Province/Iran, The Journal of Spatial Planning. MJSP, 9(2): 111-148 (In Persian). http://hsmsp.modares.ac.ir/article-21-8982-en.html.
Yousefi S, Taze M, Mirzaei S, Moradi HR, Tawanger Sh. 2011, Comparison of different classification algorithms of satellite images in the preparation of land use maps (Case study: Noor City). Journal of Application of Remote Sensing and GIS in Natural Resource Sciences. 2(2): 15-25. (In Persian). http://isj.iup.ir/index.aspx?pid=95744&jid=186.
Zhang X, Zhao T, Xu H, Liu W, Wang J, Chen X, Liu L. 2022. GLC-FCS30D: The first global 30-m land-cover dynamic monitoring product with a fine classification system from 1985 to 2022 using dense time-series Landsat imagery and continuous change-detection method. Earth System Science Data. 16 (3): 1353–1381. https://doi.org/10.5194/essd-16-1353-2024.