پیش‏ بینی رسوبات معلق با استفاده از مدل ترکیبی منحنی ‌سنجة رسوب و شبکة عصبی مصنوعی در ایستگاه‏ نارون افجه

نوع مقاله : پژوهشی

نویسنده

استادیار پژوهشی بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع‌طبیعی استان کرمانشاه، سازمان تحقیقات آموزش و ترویج کشاورزی، کرمانشاه، ایران

10.22092/wmrj.2024.366243.1589

چکیده

مقدمه و هدف
غلظت رسوبات معلق، یکی از مهم‌ترین سنجه‌های کیفی آب در منابع آب سطحی و یک پدیدة آب‌شناختی مهم است. روش‌های سنتی پیش‌بینی مانند منحنی‌های سنجة رسوب به‌دلیل در نظر نگرفتن تمام سنجه‌های مؤثر، دقت کافی ندارند. در این راستا، مدل‌های ترکیبی شامل منحنی‏های سنجة رسوب (SRC) و شبکه‌های عصبی مصنوعی (ANNs) به‏عنوان روشی نوین برای پیش‌بینی دقیق‌تر غلظت رسوبات معلق پیشنهاد شده‌اند. این مدل‌ها با توانایی یادگیری الگوهای پیچیده و غیرخطی، به‏مراتب عملکرد بهتری در مقایسه با روش‌های سنتی دارند. این پژوهش با هدف توسعه و کاربرد مدل ترکیبی SRC-ANN برای پیش‌بینی غلظت رسوبات معلق انجام ‏شد. همچنین، پیش‌بینی ‌شد این مدل با ترکیب نقاط قوت هر دو روش، دقت پیش‌بینی را به‏طور قابل‏توجهی افزایش دهد و در مدیریت بهینه منابع آب و عملکرد صحیح سازه‌های آبی سودمند باشد.
مواد و روش‏ها
در این پژوهش، مدل ترکیبی جدیدی متشکل از منحنی سنجة رسوب و شبکة عصبی مصنوعی برای پیش‌بینی دقیق‌تر غلظت رسوبات معلق در ایستگاه آب‌سنجی نارون (افجه) استفاده ‌شد. برای این منظور، از داده‌های آب‌دهی جریان و رسوب معلق 222 نمونه در دورة 50 ساله (1350 تا 1400) استفاده شد. همچنین، 14 روش گوناگون شامل 6 مدل منحنی سنجة رسوب، 6 مدل شبکة عصبی مصنوعی و 2 مدل ترکیبی برای شبیه‌سازی رسوبات معلق به‌کار گرفته شد و عملکرد هر روش با استفاده از معیارهای آماری مانند ضریب تعیین (R2)، ضریب کارایی (ME) و میانگین درصد خطای نسبی (RME) ارزیابی ‌شد.
نتایج و بحث
نتایج نشان داد که در میان روش‏های منحنی‌ سنجة رسوب، دقیق‌ترین شبیه‌سازی از وضعیت آب‌دهی رسوب مشاهده‌‏شده در مقایسه با دیگر روش‏ها مربوط به روش میانگین دسته‌ها با ضریب تعیین (R2) 84/0، ضریب کارایی (ME) 82/0 و میانگین درصد خطای نسبی (RME) 87/211، بود. همچنین، در میان روش‏های شبکة عصبی مصنوعی، دقیق‌ترین شبیه‌سازی مربوط به روش CANFIS با ضریب کارایی (ME) 8123/0 و میانگین درصد خطای نسبی (RME) 72/248، بود. سرانجام، به‏منظور بهبود نتایج پیش‌بینی‌ها از مدل‌های ترکیبی 1 و 2 استفاده شد. نتایج نشان داد که بهترین برآورد از رسوب معلق مربوط به روش ترکیبی 1 با ضریب
 کارایی (ME) 8761/0 و میانگین درصد خطای نسبی (RME) 63/59، بود.
در روش نامبرده هم برآورد اندازه‌های آب‌دهی‌های اوج و هم برآورد اندازه‌های آب‌دهی‌های پایه بسیار دقیق بود و به‏عنوان دقیق‌ترین روش‏ برای پیش‌بینی رسوبات معلق معرفی شد. این نتایج بیانگر آن بود که با استفاده از مدل ترکیبی 1 می‌توان دقت پیش‌بینی‌ها را به‌طور قابل‏توجهی بهبود داد و میان داده‌های پیش‌بینی شده و داده‌های مشاهده‌‏شده تناسب بهتری ایجاد کرد.
نتیجه ‏­گیری و پیشنهادها
از میان روش ‏های منحنی سنجة رسوب، روش منحنی سنجة رسوب میانگین دسته‌ها به‌دلیل در نظر گرفتن توزیع داده‌ها و انعطاف‌پذیری، به‏عنوان بهترین روش برای پیش‌بینی رسوب معلق معرفی شد. عملکرد شبکه‌های عصبی مصنوعی نیز در شبیه‌سازی رسوبات معلق مربوط به آب‌دهی‌های پایه و بهنجار خوب بود، اما در پیش‌بینی رسوبات معلق در شرایط سیلابی ضعیف‌تر عمل کرد. دقیق‌ترین روش برای پیش‌بینی رسوب معلق، مدل ترکیبی 1 معرفی شد که در آن از ترکیب روش‌های منحنی سنجة و شبکة عصبی مصنوعی استفاده شد. انتخاب روش نامناسب برای پیش‌بینی رسوبات می‌تواند منجر به نتایج نادرست شود. همچنین، بررسی تأثیر متغیرهای دیگر افزون بر آب‌دهی جریان بر رسوب نیز ضروری است. نتایج این پژوهش نشان داد می‌توان با استفاده از مدل‌های ترکیبی دقت پیش‌بینی رسوبات معلق را به ‏طور قابل‏توجهی افزایش داد و از آن به ‏عنوان ابزاری مؤثر برای مدیریت و پیش‌بینی رسوبات معلق و بهبود مدیریت منابع آب استفاده کرد. پیشنهاد می‌شود برای توسعه و بهینه‌سازی روش‌های ترکیبی، در ایستگاه‏های آب‌سنجی به‌ویژه در آب‌دهی‏های زیاد و شرایط سیلابی، از امکانات پیشرفته نمونه‏ گیری و تعداد نمونه‌های بیشتر استفاده شود. همچنین، پیشنهاد می‌شود مهندسان و مدیران منابع آب از نتایج این پژوهش برای توسعة راهکارهای بهینه برای مدیریت رسوبات معلق، بهره‌ ببرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Predicting Suspended Sediment using a Hybrid Model of Sediment Rating Curve and Artificial Neural Network in the Naroun Afjeh Station

نویسنده [English]

  • Golaleh Ghaffari
Assistant Professor, Soil Conservation and Watershed Management Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kermanshah, Iran
چکیده [English]

Introduction and Goal
The concentration of suspended sediments is one of the most important water quality indicators in surface water resources and a significant hydrological phenomenon. However, traditional methods, such as sediment rating curves (SRCs), lack accuracy due to not considering all effective parameters. In this context, hybrid models that include SRCs and artificial neural networks (ANNs) have emerged as a promising approach for enhancing SSC prediction accuracy. These models, with their ability to use complex nonlinear patterns, outperform traditional methods. This study aims to develop and implement an SRC-ANN hybrid model for SSC prediction. The proposed model is predicted to significantly improve prediction accuracy by combining the strengths of both methods, aiding in optimal water resource management and the proper functioning of hydraulic structures.
Materials and Methods
This research introduces a novel hybrid model that integrates sediment rating curves (SRCs) and artificial neural networks (ANNs) was used for a more accuracy prediction of suspended sediment in the Naroun (Afejeh) hydrometric station. For this purpose, data from 222 sample of flow discharge and suspended sediment over a 50-years period (1971 to 2021) were used. Additionally, 14 different were employed, including 6 sediment rating curve methods, 6 artificial neural network methods and 2 hybrid methods, to simulate suspended sediment. The performance of each method was evaluated using statistical criteria such as coefficient of determination (R2), efficiency coefficient (ME), and mean relative error percentage (RME).
Results and discussion
The results showed that among the sediment rating curve methods, the most accurate simulation of the observed sediment discharge conditions compared to other methods was related to the midpoint method, with a coefficient of determination (R2) of 0.840, a modeling efficiency (ME) of 0.820, and a mean relative error (RME) of 0.211%. Also, among the artificial neural network methods, the most accurate simulation was related to the CANFIS method, with a modeling efficiency (ME) of 0.8123 and a mean relative error (RME) of 0.248. Finally, to improve the prediction results, hybrid models 1 and 2 were used. The results showed that he best estimate of suspended sediment was related to hybrid method 1, with a modeling efficiency (ME) of 0.8761 and a mean relative error (RME) of 0.06359%. In the mentioned method, both the estimation of peak flow discharge and the estimation of base flow discharge were very accurate, and it was introduced as the most accurate method for predicting suspended sediments. These results highlight the potential of using hybrid model 1 to significantly improve prediction accuracy and to better fit the observed data.
Conclusion and Suggestions
Among the sediment rating curve methods, the mean category sediment rating curve method was identified as the best approach for predicting suspended sediment due to its consideration of data distribution and flexibility. The performance of artificial neural networks (ANNs) in simulating sediment for base and normal flows was good, but were weaker in predicting sediment during flood events. The most accurate method for suspended sediment prediction is the Hybrid model 1, which use a MSM and ANN methods. Improper selection of a sediment prediction method can lead to inaccurate results. Also, it is essential to examine the impact of other variables beyond flow discharge on sediment. The results of this research showed that it is possible to significantly increase the accuracy of suspended sediment prediction using hybrid models, and that these models can be utilized as an effective tool for managing and predicting suspended sediments, as well as improving water resource management. It is recommended to use advanced sampling facilities and a larger number of samples at hydrometric stations, especially in high-flow and flood conditions, for the development and optimization of hybrid methods. Additionally, it is suggested that engineers and water resource managers utilize the findings of this research to develop optimal strategies for suspended sediment management.

کلیدواژه‌ها [English]

  • Discharge
  • Hydrometric station
  • Modeling
  • Sediment concentration
  • Simulation
Aytek A, Ozgur K. 2008. A genetic programming approach to suspended sediment modelling. Journal of Hydrology. 351(3-4): 288-298. https://doi.org/10.1016/j.jhydrol.2007.12.005
Baloul D, Nekkach A, Ghenim A, Megnounif A. 2023. Estimation of sediment concentration using sediment rating curve approach in Isser Watershed (North-West of Algeria). Ecological Engineering and Environmental Technology. 24(6): 282-291. https://doi.org/10.12912/27197050/169308
Bestami T, Fatih Ü, Demirci M, Güzel, H. 2024. Suspended sediment estimation using Machine Learning Methods. (In Persian). https://doi.org/10.24193/awc2024_10
Bray I, Xie H. 1993. A regression method for estimating Suspended sediment yield for engaged watersheds in Atlantic Canada. Canadian Journal of Civil Engineering. 20(2): 82-87. https://doi.org/10.1139/l93-009
Chen L, Chau K. 2006. Intelligent manipulation and calibration of parameters for hydrological models. International Journal of Environment and Pollution. 28(3-4): 432-447. https://doi.org/10.1504/IJEP.2006.011221  
Christian W, Dawson R, Wilby L. 1998. An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal. 43(1): 47-66. https://doi.org/10.1080/02626669809492102
Cigizoglu H. 2005. Application of artificial neural networks to suspended sediment forecasting. Turkish Journal of Engineering and Environmental Sciences. 29(1): 9-20. https://doi.org/10.1016/j.envsoft.2005.09.009
George C. 1989. Approximation by superposition of a sigmoidal function. Mathematics of Control, Signals, and Systems. 2(4): 303-314. https://doi.org/10.1007/BF02551274
Gurpal S, Harmel D, Haggard B, Schmidt G. 2008. Evaluation of regression methodology with low-frequency water quality sampling to estimate constituent loads for ephemeral watersheds in Texas. Journal of Environmental Quality. 37(5): 1847-1854. https://doi.org/10.2134/jeq2007.0232  
Hien T, Le T. 2023. Estimation of daily suspended sediment concentration in the Ca River Basin using a sediment rating curve, multiple regression, and long short-term memory model. Journal of Water and Climate Change. https://doi.org/10.2166/wcc.2023.229  
Iadanza C, Napolitano F. 2006. Sediment transport time series in the Tiber River. Physics and Chemistry of the Earth. 31(10-17): 1212-1227.
Irani T, Nazari Nejad H, Najafzadeh A. 2019. Estimation of suspended sediment load using rating curve method (Case study: Qareh Su Watershed). Proceedings of the Fourteenth National Conference on Watershed Science and Engineering of Iran. (In Persian).
Karami F, Bayati Khatibi M, Kheirizadeh M, Mokhtari Asl A. 2020. Evaluation of performance of support vector machine algorithm in landslide susceptibility zoning in Ahar-chai Basin. Journal of Geography and Environmental Hazards. 8(4): 1-17. (In Persian).  
Khezayi Pool A, Talebi A. 2013. Investigating the possibility of predicting suspended sediments using a combination of sediment rating curve and artificial neural network (Case study: Ghatourchai River, Yazdkan Bridge). Environmental Erosion Research. 3(9): 73-82. (In Persian).  
Krause P, Boyle D, Base F. 2005. Comparison of different efficiency criteria for hydrological model Assessment. Advances in Geosciences. 5: 89–97. https://doi.org/10.5194/adgeo-5-89-2005.
Kumar S, Girija C, Nag V. 2021. Prediction and forecasting of daily suspended sediment concentration using M5Tree, ANN and LSSVM models: a case study of river Cauvery, India. Applied Water Science. 11(1): 231-237. https://doi.org/10.1007/s11356-017-0405-4.
Kurt H, Maxwell B, Stinchcombe H. 1989. Multilayer feedforward networks are universal approximates. Neural Networks. 2(5): 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
Lee B, Yun T, Choi K, Choi J, Jeong C. 2019. Hybrid Sediment Rating Curve Model for Suspended Sediment Prediction. Water. 11(2):213-221. https://doi.org/10.3390/w11020213
Lee H, Yoon Y, Cho S, Choi J. 2021. Suspended sediment prediction using an integrated model of rating curve and artificial neural network for the Han River, Korea. Water: 13(4): 472-482. https://doi.org/10.3390/w13040472
Mardookhpour A, Jamasi H, Alipour O. 2019. Sediment load estimation using rating curve method and comparison with regression and artificial neural network methods (Case study: Babol River, Mazandaran Province). Journal of Environmental Science and Technology. 21(11): 79-91. (In Persian).
Moradi Nejad A, Davod Moghaddam D, Moradi M. 2023. Evaluation of methods for estimating suspended sediment load of Qareh Chai River. Environment and Water Engineering. 5(4): 328-338.
Mustapha S, Adda D, Yebdri D, Baghdadi S, Gajbhiye M. 2024. Artificial neural network for modelling the sediments accumulation in Es-Saada reservoir (North-Western Algeria). International Journal of Hydrology Science and Technology. https://doi.org/10.1504/ijhst.2024.135122  
Nash J, Sutcliffe J. 1970. River flow forecasting through conceptual models I: A discussion of principles. Journal of Hydrology. 10(1): 282–290.
Niha K, Basha S, Bhatia K, Abhishek K, Arwa M. 2023. Multilayer Perceptron. In Artificial Intelligence and Machine Learning for Engineers. Wiley. pp. 67-87. https://doi.org/10.1002/9781394167791.ch4
Peyravan H, Shariat Jafari M, Lotfollazadeh D. 2017. The impact of landslides on sediment load of Jajroud River. Watershed Engineering and Management. 9(2): 179-189. (In Persian).