شناسایی مناطق مستعد به خطر فرونشست و عامل‌های مؤثر بر آن با استفاده از مدل های GLM و Cforest در دشت ‌کردی‌شیرازی

نوع مقاله : پژوهشی

نویسندگان

1 دانش آموختة دکتری علوم و مهندسی آبخیز (حفاظت آب و خاک) گروه مهندسی منابع‌طبیعی، دانشکدة کشاورزی و منابع‌طبیعی، دانشگاه هرمزگان، بندرعباس، ایران

2 استاد گروه مهندسی منابع‌طبیعی، دانشکده کشاورزی و منابع‌طبیعی، دانشگاه هرمزگان، بندرعباس، ایران

3 دانشیار گروه مهندسی منابع‌طبیعی، دانشکده کشاورزی و منابع‌طبیعی، دانشگاه هرمزگان، بندرعباس، ایران

4 کارشناس اداره کل منابع‌طبیعی و آبخیزداری استان هرمزگان، بندرعباس، ایران

5 کارشناس شرکت سهامی آب منطقه ای استان هرمزگان، بندرعباس، ایران

10.22092/wmrj.2025.367937.1608

چکیده

مقدمه و هدف
در طول چند دهه گذشته، فرونشست به یک معضل بزرگ در مقیاس جهانی تبدیل‌شده است. با توجه به افزایش این پدیده در کشور، پیش‌بینی و مدل‌سازی مکانی فرونشست زمین و شناسایی مناطق مستعد فرونشست برای کاهش اثرات منفی زیست‌محیطی آن ضروری است. با توجه به تهدیدها و آثار ویران‌گر فرونشست زمین بر منابع آب و خاک، مدیریت این پدیده و جلوگیری از گسترش آن موضوع مهمی در توسعة پایدار کشور به‌شمار ‌می‌آید. بررسی فرونشست برای به‌دست آوردن بینش، شناسایی شکاف‌های پژوهشی، بهبود روش‌شناسی، و اطمینان از اینکه نتایج پژوهش‌های جدید به پایگاه دانش موجود کمک می‌کند، ضروری است. در این راستا، دشت کردی‌شیرازی به‌دلیل وجود ذخیره‌گاه جنگلی مورکردی، تنوع زیستی و همچنین جایگاه کشاورزی در آن، اهمیت زیادی دارد و با توجه به اینکه فرونشست در این منطقه در حال گسترش است، شناسایی مناطق مستعد خطر فرونشست برای مقابله با این پدیده و کاهش خسارت‌های ناشی از آن ضروری است. هدف اصلی این پژوهش، توسعة یک مدل مکانی برای خطر فرونشست با استفاده از مدل یادگیری ماشین GLM در منطقة مطالعه‌شده بود. ازاین‌رو، در این پژوهش، برای اولین بار یک مدل یادگیری ماشین برای شناسایی مناطق مستعد به خطر فرونشست زمین در دشت کردی‌شیرازی به‌کار گرفته ‌شد. همچنین، سهم و اهمیت نسبی عامل‌های گوناگون مهارکنندة فرونشست با استفاده از مدل یادگیری ماشین Cforest به‌شکل کمی تعیین شد.
مواد و روش‌ها
در این پژوهش برای تهیة نقشة خطر فرونشست زمین در منطقة مطالعه‌شده، ابتدا پایگاه داده‌های مربوط به عامل‌های مهارکنندة این پدیده تهیه شد. در این راستا، نقشه موجود از فرونشست در منطقه با انجام بازدیدهای میدانی و جمع‌آوری داده‌های مربوط به بودن یا نبودن فرونشست در محیط ArcGIS تهیه شد. بعد از شناسایی مهم‌ترین عامل‌های مهارکنندة فرونشست، رابطة میان متغیرهای مؤثر و نقاط فرونشست و بدون آن با مدل یادگیری ماشین GLM بررسی شد. خروجی مدل پیش‌بینی در پنج طبقة خطر فرونشست (0 تا 1) شامل خطر خیلی‌کم (0/2-0)، کم (0/4-0/2)، متوسط (0/6-0/4)، زیاد (0/8-0/6) و خیلی‌زیاد (1-0/8) طبقه‌بندی شد و به‌شکل نقشة خطر فرونشست ارائه شد. مدل یادگیری ماشین Cforest یکی از بهترین مدل‌ها برای تعیین اهمیت متغیرهای مهارکنندة مخاطرات گوناگون به‌ویژه فرونشست است. اندازة کارایی این مدل در مقایسه با دیگر مدل‌ها بیشتر و خطای آن کمتر است. ازاین‌رو، از مدل Cforest برای تعیین اهمیت نسبی هر یک از عامل‌های مؤثر و مهارکنندة این پدیده استفاده شد.
نتایج و بحث
عملکرد مدل GLM در پیش‌بینی خطر فرونشست با استفاده از مساحت زیر منحنی راک، ارزیابی شد. مساحت زیر منحنی راک عدد 0/99 به‌دست آمد. این داده بیانگر عملکرد عالی مدل GLM در شناسایی نقاط فرونشست بود. بر اساس نتایج این مدل 2180 و 441 هکتار از کل مساحت در طبقه‌های حساسیت فرونشست خیلی‌کم و کم بودند. از سوی دیگر، 402، 447 و 1113 هکتار از کل مساحت به‌ترتیب در طبقه‌های حساسیت فرونشست متوسط، زیاد و خیلی‌زیاد بودند. همچنین، 24/3% از کل منطقه مطالعه‌شده بسیار حساس به خطر فرونشست بودند. بخش‌های مرکزی منطقه با کاربری‌های کشاورزی و باغی و جنگل که در مجاورت زمین‌های زراعی و باغی بودند، آبخوان مشترک داشتند و خطر فرونشست زمین‌ها خیلی‌زیاد و زیاد بود. همچنین، بر پایة نتایج اهمیت نسبی متغیرها، سه متغیر اصلی شامل کاربری زمین، سطح آب زیرزمینی و افت آب زیرزمینی، از مهم‌ترین متغیرهای مهارکنندة خطر فرونشست در منطقة مطالعه‌شده بودند. نتایج بررسی متغیرهای مهارکنندة خطر فرونشست زمین برای اولین بار نشان داد که این پدیده می‌تواند تهدیدی جدی برای زمین‌های جنگلی به‌ویژه جنگل‌های مناطق خشک و نیمه‌خشک باشد.
نتیجه‌گیری و پیشنهادها
بر اساس نتایج به‌دست آمده حساسیت به خطر فرونشست زمین در بخش‌های مرکزی منطقه (کاربری‌های کشاورزی و باغی و کاربری جنگل در مجاورت زمین‌های زراعی و باغی)، خیلی‌زیاد و زیاد بود. نتایج بررسی متغیرهای مهارکنندة خطر فرونشست در منطقة مطالعه‌شده نشان داد دلیل افزایش بهره‌برداری از آب‌های زیرزمینی، توسعة فعالیت‌های زراعی و باغی در دشت کردی‌شیرازی بود. ازاین‌رو، به‌منظور کاهش اثرات منفی فرونشست زمین، پیشنهاد می‌شود از انجام فعالیت‌هایی که سبب افزایش بهره‌برداری منابع آب زیرزمینی شده‌اند، جلوگیری شود. همچنین پیشنهاد می‌شود فعالیت‌های آبخیزداری (پخش سیلاب) در بالادست منطقه مطالعه‌شده به‌منظور تغذیه آبخوان منطقه انجام شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of Areas Prone to Subsidence Risk and Factors affecting it Using GLM and Cforest Models in the Kerdi Shirazi Plain

نویسندگان [English]

  • Razieh Seihani Parashkouh 1
  • Hamid Gholami 2
  • Yahya Esmaeilpour 3
  • Alireza Kamali 4
  • Maryam Zare Rashkoueh 5
1 Ph.D. graduated in Watershed Science and Engineering (Water and Soil Protection), Department of Natural Resources Engineering, Faculty of Agriculture and Natural Resource, University of Hormozgan, Bandar Abbas, Iran
2 Professor, Department of Natural Resources Engineering, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran
3 Associate Professor, Department of Natural Resources Engineering, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran
4 Expert, Department of Natural Resources and Watershed Management of Hormozgan Province, Bandar Abbas, Iran
5 Expert, Department of Regional Water Company of Hormozgan Province, Bandar Abbas, Iran
چکیده [English]

Introduction and Goal
Over the past few decades, subsidence has become a major problem on a global scale. Given the increase in this phenomenon in the country, predicting and spatial modeling of land subsidence and identifying areas prone to subsidence are essential to reduce the negative effects of this environmental impacts. Given the threats and destructive effects of land subsidence on water and soil resources, managing this phenomenon and prevent its spread is a key issue in the sustainable development of the country. Subsidence studies is essential to gain insight, identify research gaps, improve methodology, and ensure that new research contributes to the existing knowledge base. In this regard, the Kerdi Shirazi Plain is of great importance due to the presence of the Mourkerdi Forest Reserve, its biodiversity, and its agricultural status, and given that subsidence is expanding in this region, identifying areas prone to subsidence risk is essential to combat this phenomenon and reduce the damages caused by it. The main objective of this study was to develop a spatial model for subsidence risk using GLM machine learning model in the studied area. Therefore, in this study, for the first time, a machine learning model is used to identify areas prone to land subsidence risk in the Kerdi Shirazi Plain. Also, the contribution and relative importance of various factors controlling subsidence were quantitatively determined using the Cforest machine model.
Materials and Methods
In this study, to prepare a land subsidence risk map in the study area, a database related to the factors controlling this phenomenon was first prepared. In this regard, the existing map of subsidence in the area were prepared by conducting field visits and collection data related to the presence or absence of subsidence in the ArcGIS software. After identifying the most important factors controlling subsidence, the relationship between the effective variables and subsidence points with and without it was examined using the GLM machine learning model. The output of the prediction model (values ​​0 to 1) was classified into five subsidence risk classes including very low risk (0 - 0.2), low (0.2 - 0.4), moderate (0.4 - 0.6), high (0.6 - 0.8) and very high (0.8 - 1) and presented as a subsidence risk map. The Cforest machine models is the best model for determining the importance of variables controlling various hazards, especially subsidence. The efficiency of this model is higher and its less error is lower compared to other models. Therefore, the Cforest model was used to determine the relative importance of each of the effective and restraining factors of this phenomenon.
Results and Discussion
The performance of the GLM model in predicting subsidence risk was evaluated using the area under the AUC curve. The area under the ROC curve, was found to be 0.99. This data indicates the excellent performance of the GLM model in identifying subsidence points. Based on the results of this model, 2180 and 441 hectares of the total area were in the very low and low subsidence sensitivity classes. On the other hand, 402, 447 and 1113 hectares of the total area were in the moderate, high and very high subsidence sensitivity classes, respectively. Also, 24.3% of the total study area has a very high susceptibility to subsidence risk. The central parts of the region with agricultural, horticultural and forest uses adjacent to agricultural and horticultural lands, share a common aquifer, and the risk of land subsidence was very high. Also, according to the results of the relative importance of variables, three main variables, including land use, groundwater level, and groundwater drawdown were among the most important variables controlling subsidence risk in the study area. The results of this study of variables controlling the risk of land subsidence showed for the first time that this phenomenon can be a serious threat to forest lands, especially forests in arid and semi-arid regions.
Conclusion and Suggestions
Based on the results obtained, the sensitivity to land subsidence risk in the central parts of the region (agricultural and horticultural uses and forest use in the vicinity of agricultural and horticultural lands) was very high and high. The results of the study of variables controlling the risk of subsidence in the studied area showed that the reason for the increase in groundwater exploitation was the development of agricultural and horticultural activities in the Kerdi Shirazi plain. Therefore, in order to reduce the negative effects of land subsidence, it is recommended to prevent activities that increase the exploitation of groundwater resources. It is also suggested that watershed management activities (flood spreading) be carried out upstream of the studied area in order to recharge the regional aquifer.

کلیدواژه‌ها [English]

  • Kerdi shirazi
  • machine learning
  • prediction
  • relative importance
  • spatial modeling
Amighpey M, Arabi S. 2023. Study of land subsidence status due to uncontrolled groundwater extraction in Iran using comprehensive subsidence map of the country. Iranian Water Resources Research.19(5):145-156.
https://doi.org/10.22034/iwrr.2023.186215
Arabameri A, Rezaie F, Pal SC, Cerda A, Saha A, Chakrabortty R, Lee S. 2021. Modelling of piping collapses and gully headcut landforms: Evaluating topographic variables from different types of DEM. Geoscience Frontiers. 12(6): 101230.
https://doi.org/10.1016/j.gsf.2021.101230
Bates RL, Jackson JA. 1980. Glossary of Geology (Second edition): Falls Church, Virginia. American Geological Institute. 749 p.
Fiaschi S, Tessitore S, Bonì R, Di Martire D, Achilli V, Borgstrom S, Calcaterra D. 2017. From ERS-1/2 to Sentinel-1: Two decades of subsidence monitored through A-DInSAR techniques in the Ravenna area (Italy). GIScience and Remote Sensing. 54(3): 305-328. https://doi.org/10.1080/15481603.2016.1269404
Friston KJ, Penny W, Phillips C, Kiebel S, Hinton G, Ashburner J. 2002. Classical and Bayesian inference in neuroimaging: theory. Neuro Image. 16(2): 465-483.
https://doi.org/10.1006/nimg.2002.1090.
Gorriz JM, Martín-Clemente R, Puntonet CG, Ortiz A, Ramirez J, Suckling J. 2022. A hypothesis-driven method based on machine learning for neuroimaging data analysis. Neurocomputing. 510:159-171. https://doi.org/10.1016/j.neucom.2022.09.001
Hasibuan HS, Tambunan RP, Rukmana D, Permana CT, Elizandri BN, Putra GAY, Ristya Y. 2023. Policymaking and the spatial characteristics of land subsidence in North Jakarta. City and Environment Interactions. Volume 18, April 2023, 100103. https://doi.org/10.1016/j.cacint.2023.100103
Hastie T, Tibshirani R, Friedman J, Hastie T, Tibshirani R, Friedman J. 2009. The elements of statistical learning: Data mining, inference, and prediction, Random forests. Springer Series in Statistics. pp. 587-604.‏
Hothorn T, Hornik K, Zeileis A. 2006. Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics. 15(3): 651-674. https://doi.org/10.1198/106186006X133933
Jeanne P, Farr Tom G, Rutqvist J, Vasco D. 2019. Role of agricultural activity on land subsidence in the San Joaquin Valley, California. Journal of Hydrology. 569: 462-469. https://doi.org/10.1016/j.jhydrol.2018.11.077
Lee S, Park I, Choi JK. 2012. Spatial prediction of ground subsidence susceptibility using an artificial neural network. Environmental Management. 49 (2): 347-358. https://doi.org/10.1007/s00267-011-9766-5
Madani K, AghaKouchak A, Mirchi A. 2016. Iran’s socio-economic drought: Challenges of a water-bankrupt nation. Iranian Studies. 49(6): 997-1016. https://doi.org/10.1080/00210862.2016.1259286
Mallik S, Das S, Chakraborty A, Mishra U, Talukdar S, Bera S, Ramana GV. 2023. Prediction of non-carcinogenic health risk using Hybrid Monte Carlo-machine learning approach. Human and Ecological Risk Assessment: An International Journal. 29(3-4): 777-800.
DOI:10.1080/10807039.2023.2188417
Motlagh ZK, Derakhshani R, Sayadi MH. 2023. Groundwater vulnerability assessment in central Iran: Integration of GIS-based DRASTIC model and a machine learning approach. Groundwater for Sustainable Development.23(1):101037.  https://doi.org/10.1016/j.gsd.2023.101037
Nikita E. 2014. The use of generalized linear models and generalized estimating equations in bioarchaeological studies. American Journal of Physical Anthropology. 153(3):473-483.‏ https://doi.org/10.1002/ajpa.22448
Park I, Choi J, Lee MJ, Lee S. 2012. Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping. Computers and Geosciences. 48: 228-238. DOI:10.1016/j.cageo.2012.01.005
Qiao X, Chu T, Krell E, Tissot P, Holland S, Ahmed M, Smilovsky D. 2024. Interpretation and attribution of coastal land subsidence: An InSAR and Machine Learning Perspective. Institute of Electrical and Electronics Engineers. Journal of Selected Topics in Applied Earth Observations and Remote Sensing.‏ 17: 4768-4783
https://doi.org/10.1109/JSTARS.2024.3361391
Rahmani P, Gholami H, Golzari S. 2024. An interpretable deep learning model to map land subsidence hazard. Environmental Science and Pollution Research. pp.1-13.‏ https://doi.org/10.1007/s11356-024-32280-7
‏Sahu SR, Rawat KS. 2023. Analysis of land subsidencein coastal and urban areas by using various techniques-Literature Review. Indonesian Journal of Geography. 55(3):‏ https://doi.org/10.22146/ijg.83675
Shirani K, Pasandi M, Ebrahimi B. 2021. Assesment of land subsidence in the Najafabad Plain of Isfahan using differential radar interferometry (DInSAR) technique. Journal of Water and Soil Science. 25 (1): 105-127.
https://doi.org/10.47176/jwss.25.1.147214
Su H, Xu T, Xion X, Tian A. 2024. Enhancement of land subsidence prediction capabilities using machine learning and SHAP value analysis with Sentinel-1 InSAR Data.‏ Research Square. https://doi.org/10.21203/rs.3.rs-3926697/v1
Sun M, Du Y, Liu Q, Feng G, Peng X, Liao C. 2023. Understanding the Spatial-Temporal Characteristics of Land Subsidence in Shenzhen under Rapid Urbanization Based on MT-InSAR. Institute of Electrical and Electronics Engineers, Journal of Selected Topics in Applied Earth Observations and Remote Sensing.16:4153-4166.‏ https://doi.org/10.1109/JSTARS.2023.3264652
Tzampoglou P, Loupasakis C. 2017. Updated ground water piezometry data of the Amyntaio Sub-Basin and their effect to the manifestation of the Land Subsidence Phenomena. 11th International Hydrogeological Congress of Greece, Athens, Greece. pp. 4-6.
Waltham AC. 1989. Ground subsidence. Chapman and Hall, New York. 202 p.
Xia R. 2009. Comparison of random forests and Cforest: variable importance measures and prediction accuracies. Utah State University, DigitalCommons@USU. https://doi.org/10.26076/74bd-59e1