سنجش تاب‌آوری اجتماعی - فرهنگی محیط‌های روستایی در معرض خطر سیلاب با استفاده از روش TOPSIS

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

2 دانشیار گروه مرتع و آبخیزداری، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

3 دانشجوی کارشناسی ارشد آبخیزداری، گروه مرتع و آبخیزداری، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

10.22092/wmrj.2025.368104.1610

چکیده

مقدمه و هدف
در دهه‌های گذشته، توسعه‌ای ناپایدار، سبب‌ ظهور و بروز انواع بحران‌ها و خسارت­های جانی، اجتماعی، اقتصادی و مخاطرات زیست ‌محیطی در گستره آبخیزهای کشور شده است. به‌ویژه، رخداد سیل از جمله پدیده‌هایی است که تحت تأثیر این توسعه ناپایدار و اثرات تغییر اقلیم، در دهه‌های پیشین در مناطق شهری و روستایی کشور به‌شدت افزایش یافته است. بر این اساس، سنجش ابعاد گوناگون تاب‌آوری جوامع شهری و روستایی در معرض خطر سیلاب و نیز شناسایی راهبردهای افزایش تاب‌آوری در برابر سیل، گام مهمی برای مدیریت این پدیده به‌ویژه در فرایند مدیریت جامع آبخیز است. در این پژوهش، توان نسبی و مطلق تاب‌آوری اجتماعی-فرهنگی جوامع محلی در معرض خطر سیلاب در مرزبندی واحدهای آب‌شناختی آبخیز سنگ‌سفید با استفاده از روش تصمیم‌گیری چند شاخصه TOPSIS، سنجش شد.
مواد و روش‌ها
در این پژوهش، نخست شاخص‌های سنجش تاب‌آ‌وری اجتماعی-فرهنگی، با استفاده از پژوهش کتابخانه‌ای و نتایج دیگر پژوهش‌ها، مصاحبه با کارشناسان و نیز بازدیدهای میدانی و مصاحبه با ساکنان، ‌شناسایی شد. سپس، برای تعیین کمیت شاخص‌های سنجش تاب‌آوری اجتماعی-فرهنگی در وضعیت کنونی منطقه، از روش کدگذاری چند پاسخی، استفاده شد. متغیرهای استفاده‌شده در پرسش‌نامه از نوع متغیرهای ترتیبی کیفی و منطبق با طیف لیکرت (خیلی‌کم (1)، کم (2)، متوسط (3)، زیاد (4) و خیلی‌زیاد (5)) در نظر گرفته شد. سپس، از ساکنان منطقه پس از سنجش روایی و پایایی پرسش‌نامه، نظرسنجی شد. در این راستا، روایی ابزار اندازه‌گیری به‌وسیلة گروه خبرگان ‌تأیید شد. هم‌چنین، از روش آلفای کرونباخ برای محاسبه اندازة پایایی یا قابلیت اعتماد ابزار اندازه‌گیری، استفاده شد. در این پژوهش، واحد نمونه، خانوار روستایی بود و برای محاسبه حجم نمونه از رابطة کوکران و بر اساس تعداد خانوار روستایی موجود در هر واحد آب‌شناختی استفاده شد. سرانجام، توان نسبی و مطلق تاب‌آوری اجتماعی-فرهنگی جامعه‌های محلی در معرض خطر سیلاب در مرزبندی واحدهای آب‌شناختی آبخیز سنگ‌سفید ‌سنجش شد و با استفاده از روش تصمیم‌گیری چند شاخصه TOPSIS، با و بدون دخالت دادن دو گزینه فرضی در قالب کمینه و بیشینه اندازه‌های توان تاب‌آوری (به‌ترتیب با اندازه‌های متوسط 1 و 5 مرتبط با کلیه شاخص‌ها در واحدها) تعیین شد.
نتایج و بحث
در این پژوهش، 11 شاخص به‌عنوان گویه‌های اصلی سنجش تاب‌آوری محیط‌های روستایی در معرض خطر سیلاب شناسایی شد. هم‌چنین، حجم نمونه با استفاده از رابطة کوکران تعداد 663 نمونه به‌دست آمد. افزون بر این، اندازة آلفای کرونباخ 0/832 محاسبه شد که بیانگر اندازة پایایی خوب ابزار‌ اندازه‌گیری بود. نتایج نشان داد با اهمیت‌ترین و بی‌ اهمیت‌ترین شاخص در سنجش تاب‌آوری اجتماعی-فرهنگی در مقایسه با دیگر شاخص‌ها از دیدگاه کارشناسان به‌ترتیب مربوط به شاخص‌های V1 (اندازه مسئولیت‌پذیری و مشارکت افراد محلی) و V4 (شناخت ساکنان جامعه محلی از یکدیگر) بود. همچنین، پنج شاخص مهم دیگر به‌ترتیب شامل شاخص‌های V1 و V6 (سطح دانش جامعه محلی در ارتباط با سیل و اقدامات لازم)، V9 (اندازة حس دلبستگی ساکنان به ‌منطقه)، V11 (اندازة اعتماد جامعه محلی به ‌سیاست‌ها و برنامه‌های مسئولان) و V8 (اندازة اعتماد جامعه محلی به ‌خدمت‌رسانی عادلانه نهادهای متولی در هنگام  بحران و پس از آن) بودند. همچنین، نتایج نشان داد که دامنة اندازه‌های نزدیکی نسبی به راه‌حل ایده‌آل مثبت و منفی به‌ترتیب از 0/80 تا 5/20 و 1/98 تا 5/90 متغیر بود. افزون بر این، دامنة اندازه‌های نمایه TOPSIS از 0/28 تا 0/88 تغییر کرد. دامنه گستردة نمایه TOPSIS، نشان‌دهنده وجود واحدهای با توان متفاوت تاب‌آوری در برابر سیلاب در منطقه پژوهش‌شده بود. در این راستا، نتایج نشان داد که کمترین و بیشترین اندازه تاب‌آوری در برابر سیلاب (اندازه‌های Ri) مربوط به واحدهای S-int2 و S9 به‌ترتیب 0/28 و 0/88 بود. همچنین، در محیط‌های روستایی در معرض خطر سیلاب در مرزبندی واحدهای انتخاب‌شده آب‌شناختی، توان تاب‌آوری 6669/4 هکتار (73/41%) متوسط، 732/5 هکتار (8/06%) زیاد و 1682/7 هکتار (18/52%) خیلی‌زیاد بود.
نتیجه‌گیری و پیشنهادها
نتایج این پژوهش بیانگر اهمیت متفاوت میان 11 شاخص شناسایی‌شده در سنجش تاب‌آوری بود. نتایج سنجش توان تاب‌آوری محیط‌های روستایی در معرض خطر سیلاب در مرزبندی واحدهای آب‌شناختی آبخیز سنگ‌سفید، بیانگر وجود انواع واحدها با توان تاب‌آوری متوسط، زیاد و خیلی‌زیاد در آبخیز پژوهش‌شده بود. بر اساس نتایج این پژوهش، برای افزایش توان تاب‌آوری واحدها، به‌ویژه با کاربست روش‌های ساختاربندی مسئله استفاده از برنامه‌های SWOT و DPSIR، پیشنهاد می‌شود. افزون بر این، استفاده از نتایج این پژوهش و انواع فنون تعیین اهمیت یا وزن‌های شاخص‌ها در ترکیب با دیگر روش‌های تصمیم‌گیری چند شاخصه، برای پژوهش‌های آتی سنجش توان تاب‌آوری پیشنهاد می‌شود. زمان‌بر بودن نظرسنجی از ساکنان آبخیز، یکی از چالش‌برانگیزترین موضوعات در این پژوهش بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Measuring Socio-cultural Resilience of Rural Environments Exposed to Flood Risk Using the TOPSIS Method

نویسندگان [English]

  • Amin Salehpour Jam 1
  • Noredin Rostami 2
  • Shokoufeh Abdali 3
  • Jamal Mosaffaie 1
1 Associate Professor, Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
2 Associate Professor, Department of Rangeland and Watershed Management, Faculty of Agriculture, Ilam University, Ilam, Iran
3 M.Sc. Student of Watershed Science and Engineering, Department of Rangeland and Watershed Management, Faculty of Agriculture, Ilam University, Ilam, Iran
چکیده [English]

Introduction and Goal
In the past decades, unsustainable development has led to the emergence and occurrence of various crises and human, social, economic losses, and environmental hazards in the country's watersheds. In particular, flooding is one of the phenomena that has increased significantly in urban and rural areas of the country in recent decades due to this unsustainable development and the effects of climate change. Accordingly, measuring various dimensions of resilience of urban and rural communities at risk of flooding as well as identifying strategies to increase resilience against flooding, is an important step in manage this phenomenon, especially in the process of integrated watershed management. In this study, the relative and absolute potential of socio-cultural resilience of local communities at risk of flooding in the hydrological units of the Sang Sefid watershed was carried out using the TOPSIS multi-attribute decision-making method.
Materials and Methods
In this study, first, indicators of socio-cultural resilience were identified, based on the literature review, interviews with experts, as well as field visits and interviews with residents. Then, the multiple response coding method was used to quantify the socio-cultural resilience indicators in the current situation of the region. The variables used in the questionnaire were considered qualitative ordinal variables according to the Likert scale (very low (1), low (2), moderate (3), high (4) and very high (5)) were considered. Then, after assessing the validity and reliability of the questionnaire, a survey was conducted among the residents of the area. In this regard, the validity of the questionnaire was approved by the expert group. Also, Cronbach's alpha method was used to calculate the reliability of the measurement tool. Also, in this study, the sample unit was a rural household, and Cochran's formula was used to calculate the sample size based on the number of rural households in each hydrological unit. Finally, to measure the relative and absolute potential of socio-cultural resilience of local communities at risk of flooding was measured in the demarcation of hydrological units of the Sang Sefid watershed and was determined using the TOPSIS multi-criteria decision-making method, with and without the intervention of two hypothetical alternatives in the form of minimum and maximum values of resilience potential (respectively with average values of 1 and 5 related to all indicators in units).
Results and Discussion
In this study, 11 indicators were identified as the main items for measuring the resilience of rural environments at risk of flooding. Also, the sample size based on Cochran's formula was calculated as 663 samples. In addition, the value of Cronbach's alpha was calculated as 0.832, which indicates the good reliability of the measurement tool. The results show that the most important and least important indicators in measuring socio-cultural resilience compared to other indicators from the experts' perspective were indicatorsindicators V1 (The level of responsibility and participation of the local community) and V4 (The level of familiarity of local community residents with each other) respectively. Also, five other important indicators included V1, V6 (level of knowledge of the local community about flood and necessary measures), V9 (sense of belonging of the residents to the region), V11 (level of trust of the local community in the policies and programs of the authorities) and V8 (level of trust of the local community in the fair service of the custodian institutions in times of crisis and after) respectively. Also, the results show that the range of values of relative closeness to the positive and negative ideal solution varies from 0.80 to 5.20 and 1.98 to 5.90, respectively. Also, the range of TOPSIS index values varies from 0.28 to 0.88. The wide range of the TOPSIS index indicates the presence of units with different flood resilience potentials in the studied area. In this regard, the results showed that the lowest and highest flood resilience measures (Ri measures) were 0.28 and 0.88 for units S-int2 and S9, respectively. Also, in rural areas at risk of flooding in the boundaries of selected hydrological units, the resilience potential of 6669.4 hectares (73.41%) have moderate resilience potential, 732.5 hectares (8.06%) have high resilience potential, and 1682.7 hectares (18.52%) was very high.
Conclusion and Suggestions
The results of this study show the different importance among the 11 indicators identified in measuring resilience. The results of measuring the resilience potential of rural environments at risk of flooding in the demarcation of hydrological units of the Sang Sefid watershed indicated the existence of types of units with medium, high, and very high resilience potential in the studied watershed. Based on the results of this research, it is recommended to use SWOT and DPSIR programs to increase the resilience potential of units, especially by applying problem structuring methods. In addition, the use of the results of this study and various techniques for determining the importance or weights of indicators in combination with other multi-attribute decision-making methods is suggested for future studies of resilience measurement. Also, the time-consuming survey to fill the questionnaire by the watershed residents was the most challenging issue in the current study.

کلیدواژه‌ها [English]

  • Decision matrix
  • ideal solution
  • local community
  • multi-attribute decision-making
  • resilience potential
Abdali Y, Zanganeh Shahraki S, Hataminejad H, Pourahmad A, Salmani M. 2024. Measuring urban resilience against flood risk using composite indicators: A case study of Khorramabad City. Motaleate Shahri. 13(50): 61-76. (In Persian). https://doi.org/10.34785/J011.2022.021
Adger WN. 2000. Social and ecological resilience: are they related?. Progress in Human Geography. 24(3): 347-64.
Afsari R, Shahsavary MS. 2023. Spatial analysis of resilience against natural hazards with an emphasis on floods, the Case study of districts of Tehran city. Geographical Urban Planning Research. 10(4): 119-33. (In Persian). https://doi.org/10.22059/JURBANGEO.2023.351188.1758
Aghaloo K, Sharifi A, Habibzadeh N, Ali T, Chiu YR. 2024. How nature-based solutions can enhance urban resilience to flooding and climate change and provide other co-benefits: A systematic review and taxonomy. Urban Forestry and Urban Greening. 30: 128320. https://doi.org/10.1016/j.ufug.2024.128320
Ali S, George A. 2022. Modelling a community resilience index for urban flood-prone areas of Kerala, India (CRIF). Natural Hazards. 113(1): 261-86. https://doi.org/10.1007/s11069-022-05299-7
Anacio DB, Hilvano NF, Burias IC, Pine C, Nelson GL, Ancog RC. 2016. Dwelling structures in a flood-prone area in the Philippines: sense of place and its functions for mitigating flood experiences. International Journal of Disaster Risk Reduction. 15:108-115. https://doi.org/10.1016/j.ijdrr.2016.01.005
Attaran S, Mosaedi A, Sojasi Qeydari H. 2022. Investigating the role of natural and human factors on intensification of floods and flooding in Kalat city. Water and Soil. 36(4): 21-38. (In Persian). https://doi.org/10.22067/jsw.2022.77163.1173
Baranpour N, Hasanvand D, Nademi Y. 2021. Examining the effect of floods in 1398 on production and employment in Iran agricultural sector using the Expanding Hypothetical Extraction method. Agricultural Economics and Development. 29(3): 73-97. (In Persian). https://doi.org/10.30490/AEAD.2021.352028.1277
Belvasi IA, Asghari Saraskanrod S, Esfandiari Dorabad F, Zeinali B. 2020. The role of land use changes on run-off and flood properties in the Doab catchment. Iranian Journal of Ecohydrology. 7(2): 331-344. (In Persian). https://doi.org/10.22059/IJE.2020.295346.1263
Cao F, Xu X, Zhang C, Kong W. 2023. Evaluation of urban flood resilience and its space-time evolution: a case study of Zhejiang Province, China. Ecological Indicators. 154: 110643. https://doi.org/10.1016/j.ecolind.2023.110643
Chun H, Chi S, Hwang B. 2017. A spatial disaster assessment model of social resilience based on geographically weighted regression. Sustainability. 9(12): 1-16. https://doi.org/10.3390/su9122222
Cochran WG. 1977. Sampling technique. Third ed. New York: Wiley.
Cronbach LJ. 1951. Coefficient alpha and the internal structure of tests. Psychometrika. 16(3): 297-334. https://doi.org/10.1007/BF02310555
Cutter SL. 2016. Resilience to what? resilience for whom?. Geographical Journal. 182(2):110-113. https://doi.org/10.1111/geoj.12174
Cutter SL, Burton CG, Emrich CT. 2010. Disaster resilience indicators for benchmarking baseline conditions. Journal of Homeland Security and Emergency Management. 7(1): 28-42. https://doi.org/10.2202/1547-7355.1732
Cvetković VM, Šišović V. 2024. Understanding the sustainable development of community (social) disaster resilience in Serbia: Demographic and Socio-economic Impacts. Sustainability. 16(7): 1-34. https://doi.org/10.3390/su16072620
Dewa O, Makoka D, Ayo‐Yusuf OA. 2023. Measuring community flood resilience and associated factors in rural Malawi. Journal of Flood Risk Management. 16(1): 1-21. https://doi.org/10.1111/jfr3.12874
Doroudi H, Sepehrifar H. 2019.  Assessing crisis management in Iran based on Little John Model (a case study of the flood of 2019 in Lorestan, Mazandaran, and Kermanshah earthquake in 2017). Disaster Prevention and Management Knowledge. 9(4):393-402. (In Persian).
Folke C. 2006. Resilience: the emergence of a perspective for social–ecological systems analyses. Global Environmental Change. 16(3): 253-267. https://doi.org/10.1016/j.gloenvcha.2006.04.002
Foroudi Sefat E, Golestani Kermani S, Samare Hashemi M, Zounemat-Kermani M. 2024. A review of two decades of flood and drought hazards in Kerman Province. Watershed Engineering and Management. 17(2): 235-255. (In  Persian). https://doi.org/10.22092/ijwmse.2024.366749.2077
General Department of Natural Resources and Watershed Management of Ilam Province. 2018a. Botanical report, detailed studies of the Sang Sefid watershed, General Department of Natural Resources and Watershed Management (GDNRWM), Ilam Province. 131 p. (In Persian).
General Department of Natural Resources and Watershed Management of Ilam Province. 2018b. Hydrological report, detailed studies of the Sang Sefid watershed, General Department of Natural Resources and Watershed Management (GDNRWM), Ilam Province. 98 p. (In Persian).
General Department of Natural Resources and Watershed Management of Ilam Province. 2018c. Meteorology and climatology report, detailed studies of the Sang Sefid watershed, General Department of Natural Resources and Watershed Management (GDNRWM), Ilam Province. 157 p. (In Persian).
General Department of Natural Resources and Watershed Management of Ilam Province. 2018d. Socio-economic report, detailed studies of the Sang Sefid watershed, General Department of Natural Resources and Watershed Management (GDNRWM), Ilam Province. 74 p. (In Persian).
George D, Mallery P. 2003. SPSS for Windows step by step: A simple guide and reference, 11.0 update (4th ed.), Allyn and Bacon, Boston. 435 p.
Ghadbeygi M, Mazaheri H, Shafiei H, Mardian M. 2024. Urban flood risk management, a solution for the protection of ecosystems (case study: Arak City). Research in Ethnobiology and Conservation. 1(2): 38-50. (In Persian). https://doi.org/10.22091/ETHC.2024.10558.1018
Ghasemzadeh B, Zarabadi ZS, Majedi H, Behzadfar M, Sharifi A. 2021. A framework for urban flood resilience assessment with emphasis on social, economic and institutional dimensions: A qualitative study. Sustainability. 13(14): 1-27. https://doi.org/10.3390/su13147852
González-Quintero C, Avila-Foucat VS. 2019. Operationalization and measurement of social-ecological resilience: A systematic review. Sustainability. 11(21): 1-18. https://doi.org/10.3390/su11216073
Haque MM, Islam S, Sikder MB, Islam MS. 2022. Community flood resilience assessment in Jamuna floodplain: A case study in Jamalpur District Bangladesh. International Journal of Disaster Risk Reduction. 72: 1-13. https://doi.org/10.1016/j.ijdrr.2022.102861
Holling CS. 1973. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics. 4: 1-23. https://doi.org/10.1146/annurev.es.04.110173.000245
Irani T, Abghari H, Rasouli AA. 2024. Analyzing the threats of climate change and land use changes on increasing flood risk in the Shahrchay drainage basin. Journal of Natural Environmental Hazards. 14(2):105-126. (In Persian). https://doi.org/10.22111/JNEH.2024.49039.2053
Jacinto R, Sebastião F, Reis E, Ferrão J. 2023. SoResilere—a social resilience index applied to Portuguese flood disaster-affected municipalities. Sustainability. 15(4): 1-43. https://doi.org/10.3390/su15043309
Khourshidi S, Rostami N, Salehpourjam A. 2021. Prioritizing flood producing potential in ungauged watersheds using the AHP-VIKOR method (Case study: Haji-Bakhtiar Watershed, Ilam). Environmental Erosion Research Journal. 11(2): 66-92. (In Persian). https://doi.org/20.1001.1.22517812.1400.11.2.4.4
Klein RJ, Nicholls RJ, Thomalla F. 2003. Resilience to natural hazards: How useful is this concept?. Global Environmental Change, Part B: Environmental Hazards. 5(1): 35-45. https://doi.org/10.1016/j.hazards.2004.02.001
Kotzee I, Reyers B. 2016. Piloting a social-ecological index for measuring flood resilience: A composite index approach. Ecological Indicators. 60: 45-53. https://doi.org/10.1016/j.ecolind.2015.06.018
Luo Z, Tian J, Zeng J, Pilla F. 2024. Flood risk evaluation of the coastal city by the EWM-TOPSIS and machine learning hybrid method. International Journal of Disaster Risk Reduction. 106: 1-16. https://doi.org/10.1016/j.ijdrr.2024.104435
Lwin KK, Pal I, Shrestha S, Warnitchai P. 2020. Assessing social resilience of flood-vulnerable communities in Ayeyarwady Delta, Myanmar. International Journal of Disaster Risk Reduction. 51: 1-10. https://doi.org/10.1016/j.ijdrr.2020.101745
Mabrouk M, Haoying H. 2023. Urban resilience assessment: A multicriteria approach for identifying urban flood-exposed risky districts using multiple-criteria decision-making tools (MCDM). International Journal of Disaster Risk Reduction. 91:  235-257. https://doi.org/10.1016/j.ijdrr.2023.103684
Mansourfar K. 2006. Advanced methods of statistics with computer programs. University of Tehran Press, Tehran. 123 p. (In Persian).
Mesbah A, Karamidehkordi E, Tohidloo S, Salehpour Jam A, Saadi T. 2024. A review of resilience in the studies of natural hazards in Iran. Watershed Engineering and Management. 16(3): 354-77. (In Persian). https://doi.org/10.22092/ijwmse.2023.362235.2019
Miao C, Na M, Chen H, Ding M. 2024. Urban resilience evaluation based on Entropy-TOPSIS model: A case study of county-level cities in Ningxia, northwest China. International Journal of Environmental Science and Technology.10: 1-6. https://doi.org/10.1007/s13762-024-05880-6
Mishra NO, Mohapatra SU. 2019. Identification and construction of flood disaster resilience index to measure socio-economic flood resilience in eastern Uttar Pradesh: A inter-district analysis. International Journal of Applied Social Science. 6(12): 85-90.
Moghadas M, Asadzadeh A, Vafeidis A, Fekete A, Kötter T. 2019. A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. International Journal of Disaster Risk Reduction. 35: 1-14. https://doi.org/10.1016/j.ijdrr.2019.101069
Mosaffaie J, Nikkami D, Salehpour Jam A. 2019. Watershed management in Iran: history, evolution and future needs. Watershed Engineering and Management. 11(2): 283-300. (In Persian). https://doi.org/10.22092/ijwmse.2018.121169.1459
Mosaffaie J, Salehpour Jam A, Tabatabaei MR, Kousari MR. 2021. Trend assessment of the watershed health based on DPSIR framework. Land Use Policy. 100: 1-9. https://doi.org/10.1016/j.landusepol.2020.104911
Mushwani H, Ahmadzai MR, Ullah H, Baheer MS, Peroz S. 2024. A comprehensive AHP numerical module for assessing resilience of Kabul City to flood hazards. Urban Climate. 55: 1-13. https://doi.org/10.1016/j.uclim.2024.101939
Mwanza JB, Nsenduluka E, Shumba O. 2024. Indigenous knowledge use and its constraints in drought resilience building: A case of rural Gwembe-Zambia. Open Journal of Social Sciences. 12(1): 339-59. https://doi.org/10.4236/jss.2024.121023
Nahid M, Zandmoghadam MR, Karkehabadi Z. 2021. Measuring and evaluating the resilience of urban areas against urban flooding (Case study: district 4 of Tehran). Journal of Range and Watershed Management. 74(1): 189-205. (In Persian). https://doi.org/10.22059/jrwm.2021.323575.1589
Nakileza BR, Majaliwa MJ, Wandera A, Nantumbwe CM. 2017. Enhancing resilience to landslide disaster risks through rehabilitation of slide scars by local communities in Mt Elgon, Uganda. Journal of Disaster Risk Studies. 9(1): 1-12.
Obrist B, Pfeiffer C, Henley R. 2010. Multi‐layered social resilience: a new approach in mitigation research. Progress in Development Studies. 10(4): 283-93. https://doi.org/10.1177/146499340901000402
Pandey V, Komal, Dincer H. 2023. A review on TOPSIS method and its extensions for different applications with recent development. Soft Computing. 27(23): 18011-39. https://doi.org/10.1007/s00500-023-09011-0
Parizi E, Hosseini SM. 2022. Frequency analysis and investigation of the factors affecting 100-yr peak-flood in Iran’s watersheds. Geography and Environmental Planning. 33(2): 19-38. (In Persian). https://doi.org/10.22108/GEP.2022.130040.1450
Parizi SM, Taleai M, Sharifi A. 2022. A GIS-based multi-criteria analysis framework to evaluate urban physical resilience against earthquakes. Sustainability. 14(9): 1-31. https://doi.org/10.3390/su14095034
Prashar N, Lakra HS, Shaw R, Kaur H. 2023. Urban flood resilience: A comprehensive review of assessment methods, tools, and techniques to manage disaster. Progress in Disaster Science. 27: 1-17. https://doi.org/10.1016/j.pdisas.2023.100299
Proag V. 2014. The concept of vulnerability and resilience. Procedia Economics and Finance.
18: 369-76. https://doi.org/10.1016/S2212-5671(14)00952-6
Rajabizadeh Y, Ayyoubzadeh SA, Zahiri A. 2020. Flood survey of Golestan province in 2018-2019 and providing solutions for its control and management in the future. Iranian Journal of Ecohydrology. 6(4): 921-942. (In Persian). https://doi.org/10.22059/IJE.2019.283004.1137
Rana IA, Bhatti SS, Jamshed A, Ahmad S. 2021. An approach to understanding the intrinsic complexity of resilience against floods: Evidences from three urban communities of Pakistan. International Journal of Disaster Risk Reduction. 63: 1-10. https://doi.org/10.1016/j.ijdrr.2021.102442
Ranjbar A, Moradi M. 2020. Investigation of short-duration convective rainfall leads to Flashflood event in Kan and Sijan regions (case study: july 19, 2015). Journal of Meteorology and Atmospheric Science. 3(1): 1-4. (In Persian). https://doi.org/10.22034/JMAS.2020.130878
Sadeghi HR, Ghabelnezam E, Ahmadinejad Baghban F, Zabihi Seilabi M, Chamani R. 2024. Variability in health zoning due to applying different methods for averaging pressure, state, and response indices in the Baladeh-e-Noor watershed, Iran. Integrated Watershed Management. 5(1): 19-36. (In Persian). https://doi.org/10.22034/IWM.2024.2035677.1163
Saja AA, Teo M, Goonetilleke A, Ziyath AM, Gunatilake J. 2020. Selection of surrogates to assess social resilience in disaster management using multi-criteria decision analysis. International Journal of Disaster Resilience in the Built Environment. 11(4): 453-80. https://doi.org/10.1108/IJDRBE-07-2019-0045
Salehi A, Karasi P. 2021. The role of man-made factors in desertification east of Isfahan. Spatial Planning. 11(3): 1-24. (In Persian). https://doi.org/10.22092/WMEJ.2019.126535.1227
Salehpour Jam A, Karimpour Reihan M. 2016. Investigation of pedological criterion affecting on desertification in alluvial fans using AHP-TOPSIS technique (Case study: South east of Roudeh-Shoor Watershed). Desert. 21(2): 181-92. https://doi.org/10.22059/JDESERT.2016.60320
Salehpour Jam A, Mosaffaie J. 2023. Introducing the concept of a ladder of watershed management: A stimulus to promote watershed management approaches. Environmental Science and Policy. 147: 315-325. https://doi.org/10.1016/j.envsci.2023.07.001
Salehpour Jam A, Mosaffaie J, Tabatabaei MR. 2021. Management responses for Chehel-Chay watershed health improvement using the DPSIR framework. Journal of Agricultural Science and Technology. 23(4): 797-811.
Salehpour Jam A, Peyrowan HR, Tabatabaei MR, Sarreshtehdari A, Mosaffaie J. 2019. An assessment of the land degradation potential using the TOPSIS method (case study: rangelands overlooking the city of Eshtehard, the province of Alborz). Watershed Management Research Journal. 32(4): 79-93. (In Persian). https://doi.org/10.22092/WMEJ.2019.126535.1227
Sharifinia Z. 2019. Assessing the social resilience of rural areas against flooding using FANP and WASPAS models (Case study: Chardange district of Sari County). Journal of Geography and Environmental Hazards. 8(2): 1-26. (In Persian). https://doi.org/10.22067/GEO.V0I0.78724
Shih HS, Olson DL. 2022. TOPSIS and its extensions: A distance-based MCDM approach. Springer. 447: 217-231. https://doi.org/10.1007/978-3-031-09577-1
Soleimanpour SM, Salehpour Jam A, Mosaffaie J, Noroozie K. 2023. Land subsidence risk management solutions in Seydan-Farooq plain of Fars Province with the Driving force-Pressure-State-Impact-Response approach. Watershed Management Research. 36(1): 50-65. (In Persian). https://doi.org/10.22092/WMRJ.2022.358262.1465
Trémeau J, Olascoaga B, Backman L, Karvinen E, Vekuri H, Kulmala L. 2024. Lawns and meadows in urban green space–a comparison from perspectives of greenhouse gases, drought resilience and plant functional types. Biogeosciences. 21(4): 949-972. https://doi.org/10.5194/bg-21-949-2024
Zhang H, Yang J, Li L, Shen D, Wei G, Dong S. 2021. Measuring the resilience to floods: a comparative analysis of key flood control cities in China. International Journal of Disaster Risk Reduction. 59: 1-8. https://doi.org/10.1016/j.ijdrr.2021.102248
Zhang M, Yang X, Zhang J, Li G. 2022. Post-earthquake resilience optimization of a rural road-bridge transportation network system. Reliability Engineering and System Safety. 225: 1-18. https://doi.org/10.1016/j.ress.2022.108570
Zayyari K, Ebrahimipoor M, Pourjafar MR, Salehi E. 2020. Explaining strategies for increasing physical resilience against flood, case study: Cheshmeh Kile River, Tonekabon River. Sustainable City. 3(1): 89-105. (In Persian). https://doi.org/10.22034/JSC.2019.186626.1014