توزیع مکانی کربن آلی خاک سطحی در گونه های گیاهی مراتع آبخیز چهلگزی شهرستان سنندج، استان کردستان

نوع مقاله : پژوهشی

نویسندگان

1 استادیار بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کردستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، سنندج، ایران

2 پژوهشگر گروه مرتع مؤسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

10.22092/wmrj.2025.368385.1612

چکیده

مقدمه و هدف
کربن آلی خاک، بر تمام ویژگی­ های فیزیکی، شیمیایی و زیستی خاک تأثیرگذار است و سبب حاصلخیزی خاک می‌شود و یکی از مهم‌ترین شاخص ­های کیفیت خاک است. کربن آلی خاک در بوم‌نظام ­های خشکی از جنبه­ های گوناگونی همچون کاهش اثرات گازهای گلخانه ­ای، افزایش عملکرد و حاصلخیزی خاک، کاهش فرسایش ­پذیری خاک، افزایش ظرفیت ­نگهداری آب و مواد غذایی و غیره، حائز اهمیت است. ازاین‌رو، امروزه در زمره عامل‌های تعیین‌کنندة سلامت خاک طبقه ­بندی‌شده است و از آن با عناوینی همچون قلب کشاورزی پایدار و بخش حیاتی سامانه ­های تولید  یاد می ­شود. مدیریت کربن آلی به‌ویژه در خاک­هایی با کربن آلی کمتر از یک درصد (که بخش بزرگی از خاک­های ایران را شامل می ­شوند)، ضرورت اجتناب‌ناپذیری است. هدف این پژوهش، ارزیابی توان عامل‌های طیفی و غیرطیفی خاک به‌منظور پیش ­بینی توزیع مکانی کربن آلی خاک سطحی در مراتع نیمه ­خشک چهلگزی سنندج با استفاده از تحلیل عاملی و وایازی خطی چندگانه بود.
مواد و روش‌ها
داده ­های ماهواره ­ای استفاده‌شده در این پژوهش از پایگاه سازمان زمین­ شناسی آمریکا (USGS) دریافت شد. این داده‌ها از نوع اطلاعات سطح یک ماهوارة لندست 8 در تاریخ 2019/06/18 بود و شمارة مسیر و ردیف آن به‌ترتیب 167 و 35 بود. برای تهیة نقشة مدل طبقات ارتفاعی منطقه، از نقشه ­های پستی‌بلندی 1:25000 منطقة مطالعه‌شده به شماره‌های 5360-1 NE و 5360-1NW  و 5361-2 SWبه‌ترتیب به نام ­های ساتیله، تودارملا و هانه‌گلان استفاده شد. با انجام بازدید­های میدانی و به‌کارگیری روش فیزیونومی- فلوریستیک، مرز واحدهای همگن، اصلاح و تدقیق شد و نقشه نهایی گونه‌های گیاهی منطقه تهیه شد. برای برآورد متغیر‌های درصد پوشش تاجی، لاشبرگ، سنگ و سنگریزه و خاک لخت موجود در هر گونه گیاهی، از روش گام نقطه استفاده شد. سپس، از خاک گونه‌های مختلف مرتعی آبخیز چهلگزی، با استفاده از روش تصادفی طبقه ­بندی شده، نمونه ­برداری شد. به این منظور، تعداد 135 پایگاه تعلیمی در واحدهای کاری همگن انتخاب شد. از این تعداد، اطلاعات 105 پایگاه برای واسنجی مدل و اطلاعات 30 پایگاه برای اعتبارسنجی آن به‌کار گرفته شد. در هر یک از پایگاه ­های تعلیمی به شیوه تصادفی، یک نمونه خاک ترکیبی متشکل از نه مشاهده از ژرفای صفر تا 20 سانتی‌متری خاک سطحی برداشت شد. در هر نمونه، محتوای کربن آلی خاک با استفاده از روش تیتراسیون والکلی-بلاک اندازه‌گیری شد. به‌منظور تعیین یک مدل مناسب برای پیش ­بینی کربن آلی خاک سطحی، 21 متغیر بررسی شد. این متغیرها مشتمل بر 14 متغیر طیفی و هفت متغیر شکل معیار بودند. با استفاده از فن تحلیل عاملی مبتنی بر روش اکتشافی متغیرهای مد نظر به سه عامل (رنگ خاک، پوشش گیاهی، گیتاشناسی همراه با ویژگی‌های فیزیکی خاک طبقه ­بندی شدند. این سه عامل در مجموع 80/356% تغییرات داده ­ها را تبیین کردند. با استفاده از وایازی خطی چندگانه، یک معادله وایازی مناسب (0/66=R2) برای پیش ­بینی کربن آلی خاک سطحی محاسبه شد.
نتایج و بحث
نقشه واحدهای همگن از روی­ هم ­اندازی سه لایة اطلاعات مربوط به طبقه‌های بلندی، شیب و جهت­ های دامنه­ ای و حذف واحدهای خرد، زمین صخره­ای و غیرقابل دسترس و زمین­ های کشاورزی تهیه شد و مشتمل بر 32 واحد همگن بود. نقشه پوشش گیاهی منطقه شامل پنج گونة گیاهی غالب بود. در این پژوهش، متغیرهای طیفی انعکاسی مشتمل بر 14 متغیر، از تصویرهای ماهواره‌ای استخراج شد. متغیرهای غیرطیفی (شکل معیار) نیز شامل هفت سنجة بلندی نسبی، شیب، جهت دامنة تبدیل‌شده، انحنای عمومی دامنه، انحنای عمودی و افقی دامنه و شاخص رطوبت پستی‌بلندی بودند که از مدل رقومی ارتفاع منطقه به‌دست آمدند. سپس، با انجام آزمون تحلیل عاملی شاخص کفایت نمونه برداری (KMO) بررسی شد و متغیرهای با ضریب همبستگی کمتر از 5/0 حذف شدند. این آزمون تا دستیابی به نتیجة مناسب، تکرار شد و سرانجام 8 متغیر (آلبیدوی سطح، شاخص گیاهی تفاضلی بهنجار، شاخص‌های­ سبزینگی، روشنایی و رطوبت تبدیل تسلدکپ، شاخص رس، شیب و بلندی از سطح تراز دریا) به­ عنوان متغیرهای مناسب برای ورود به مدل تحلیل عاملی انتخاب شدند. جذر میانگین مربعات خطا و میانگین نسبی خطای مطلق مدل پیشنهادی به‌ترتیب 0/191 و 0/117 محاسبه شد. مقایسة میانگین ذخیرة کربن آلی خاک سطحی در گونه ­های گیاهی موجود در منطقة پژوهش‌شده با استفاده از تجزیة وردایی، معنی­ دار بود (0/01< p). بر اساس نتایج این پژوهش با تحلیل نمودار میانگین بهنجار یک ­طرفه، گونه­ های گیاهی بررسی‌شده در دو گروه بیشتر از میانگین کل کربن آلی رویشگاه (گونه ­های 1، 2 و 5) و کمتر از میانگین کل کربن آلی رویشگاه (گونه ­های 3 و 4)، طبقه ­بندی شدند.
نتیجه‌گیری و پیشنهادها
نتایج تجزیة وردایی میانگین ذخیرة کربن آلی در خاک سطحی 5 گونه­ گیاهی موجود در منطقه مطالعه‌شده نشان داد که اختلاف میانگین کربن آلی خاک در گونه ­های گیاهی مد نظر معنی­ دار بود (0/01< p). میانگین وزنی کربن آلی در خاک سطحی مراتع منطقه پژوهش‌شده 1/26% به‌دست آمد. بر پایة نتایج این پژوهش و بر اساس مساحت و پستی‌بلندی منطقه و تعداد نمونه‌های برداشت‌شده، پیشنهاد می‌شود برای فراهم آوردن شرایط تغییر میانگین وزنی کربن آلی در خاک سطحی مراتع منطقه، تعداد نمونه‌ها را افزایش داد و نقاط نمونه‌برداری را با پراکنش مناسب‌تری تعیین کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatial Distribution of Surface Soil Organic Carbon in Vegetation Types of Chehelgazi Rangelands, Sanandaj City, Kurdistan Province

نویسندگان [English]

  • Salahudin Zahedi 1
  • Rostam Khalifehzade 2
1 Assistant Professor, Soil Conservation and Watershed Management Research Department, Kurdistan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sanandaj, Iran
2 Researcher, Rangeland Section, Forests and Rangelands Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

Introduction and Goal
Soil organic carbon affects all physical, chemical, and biological properties of the soil, causes soil fertility and is one of the most important soils qualities. Soil organic carbon is important in terrestrial ecosystems from various aspects such as reducing greenhouse gas effects, increasing soil yield and fertility, reducing soil erodibility, increasing water and nutrient retention capacity, etc. Therefore, today it is classified as one of the determinants of soil health and is referred to as the heart of sustainable agriculture and a vital part of production systems. Organic carbon management is an inevitable necessity, especially in soils with organic carbon less than one percent (which includes most of the soils in Iran). The aim of this study was to evaluate the power of spectral and non-spectral soil factors to predict the spatial distribution of topsoil organic carbon in the semi-arid Chehelgazi rangelands of Sanandaj using factor analysis and multiple linear regression.
Materials and Methods
The satellite data used in this study was obtained from the United States Geological Survey (USGS) database. This data is Level 1 data from the Landsat 8 satellite dated 18/06/2019, with path and row numbers 167 and 35, respectively. To prepare the elevation model map of the region, 1: 25,000 topographic maps of the study area, numbers 5360-1 NE, 5360-1NW, and 5361-2 SW, respectively named Satile, Todarmala, and Haneh-Gallan, were used. By conducting field visits and applying the physiognomic-floristic method, the boundaries of homogeneous units were modified and refined, and the final map of the plant species was prepared. In order to estimate the parameters of the percentage of canopy cover, litter, stones and pebbles, and bare soil in each plant type, the step-point method was used. Soil samples from different types of rangeland in the Chehelgazi watershed were taken using a stratified random sampling method. In this regard, a number of 135 training sites were selected in the homogeneous units. Of these sites, 105 sites were used to calibrate the model and 30 sites were used to validate it. In each of the training sites, a mixed soil sample includes of 9 observations was taken from a depth of 0 to 20 cm of the surface soil, randomly. In each sample, the SOC content was determined by Walkley-Black titration method. In order to determine an appropriate model for predicting the topsoil SOC, the 21 variables were used. These variables include 14 spectral variables and the seven morphometric variables. Using Factor Analysis (EFA), technique based on exploratory method, the considered variables were classified into three factors (soil color, vegetation, lithology and physical characteristics of the soil). These three factors explained a total of 80.356% of the data changes. Using multiple linear regression, a suitable regression equation (R2=0.66) was calculated to predict topsoil organic carbon.
Results and Discussion
The map of homogeneous units was prepared by overlaying three information layers of elevation classes, slope and slope directions and eliminating micro-units, rocky and inaccessible lands and agricultural lands and consists of 32 homogeneous units. A vegetation map of the region including five major vegetation types. In this study, reflectance spectral variables included 14 variables extracted from satellite images. The non-spectral variables (criterion form) also include seven variables of relative elevation, slope, transformed slope direction, general slope curvature, vertical and horizontal slope curvature, and topographic moisture index, which were obtained from the digital elevation model of the region. Then Measure of sampling adequancye (KMO) was examined by performing a factor analysis test, and variables with a KMO less than 0.5 were eliminated. This test was repeated until a suitable result was achieved, and finally 8 variables (surface albedo, normalized differential vegetation index, vegetation indices, brightness and moisture of the Tesselcap transformation, clay index, slope, and height above sea level) were selected as suitable variables to enter the factor analysis model. The root mean square error and relative mean absolute error of the proposed model were calculated as 0.191 and 0.117, respectively. The comparison of the average topsoil organic carbon capacity in plant species in the studied area using regression analysis was significant (p<0.01). Based on the results of this study, by analyzing the one-way normalized mean plot, the studied plant species were classified into two groups: those with more than the average total organic carbon of the habitat (species 1, 2, and 5) and those with less than the average total organic carbon of the habitat (species 3 and 4).
Conclusion and Suggestions
The results of the regression analysis of the average organic carbon storage in the topsoil of the 5 plant species in the study area showed that the average soil organic carbon in the plant species in the study area differed significantly (p < 0.01). The average weighted of organic carbon in the topsoil of the rangelands of the study area is 1.26%. According to the results of this study, the area and elevation of the region, and the number of samples collected, it is suggested that in order to provide conditions for changing the average weight of organic carbon in the topsoil of the region's rangelands, the number of samples should be increased and sampling points should be determined with a more appropriate distribution.

کلیدواژه‌ها [English]

  • Exploratory factor analysis
  • landsat spectral variables
  • morphometric variables
  • multiple linear regression
  • semi-arid rangelands
  • soil organic carbon
Beven K, Kirkby N. 1979. A physically based, variable contributing area model of basin hydrology. Hydrology Science Bulletin. 24 (1): 43–69. https://doi.org/10.1080/02626667909491834
Bidwell OW. 1989. Soil fertility and organic matter as critical components of production systems. Soil Survey Horizons. 30(3): 77-79. https://doi.org/10.2136/sh1989.3.0077
Bouma J, Mcbratney AB. 2013. Framing soils as an actor when dealing with wicked environmental problems. Geoderma. 200–201:130–139. https://doi.org/10.1016/j.geoderma.2013.02.011
Esadafal R, Girard MC, Courault D. 1989. Munsell soil color and soil reflectance in the visible spectral bands of landsat MSS and TM data. Remote Sensing of Environment. 27 (1): 37-46. https://doi.org/10.1016/0034-4257(89)90035-7
Florinsky IV, Eilers RG, Manning GR, Fuller LG. 2002. Prediction of soil properties by digital terrain modelling. Environmental Modelling and Software. 17(3):295-311. https://doi.org/10.1016/S1364-8152(01)00067-6
Floyd FJ, Widaman KF. 1995. Factor analysis in the development and refinement of clinical assessment instruments. Psychological Assessment. 7(3): 286-299. https://doi.org/10.1037/1040-3590.7.3.286
Franklin J, McCullough P, Gray C. 2000. Terrain variables used for predictive mapping of vegetation communities in Southern California. In Wilson J, Gallant J (Eds) Terrain Analysis: Principles and Applications. Wiley. New York. Chichester. Toronto and Brisbane. pp. 331-353. https://www.researchgate.net/publication/43289817
Jafari A, Sefidi H, Rahime M. 2023. Investigating the relationship between spatial changes of soil carbon deposition with climatic elements of temperature and precipitation in recent years (Ahangaran Basin study area). Journal of Climate Change Research. 3 (12):1-20. (InPersian). https://doi.org/10.30488/ccr.2022.365475.1100
Jafariyan Z, Tayefeh L, Alikhani S and Tamartash R. 2012. Investigation of carbon storage potential of Artemisia aucheri, Agropyron elongatum, Stipa barbata, in Semi-arid Rangelands of Iran (Case study: Peshert Region Kiasar). Journal of Range and Watershed Management. 65(2):191-202. (In Persian). https://doi.org/10.22059/jrwm.2012.30011
Kaiser HF. 1960. The application of electronic computers to factor analysis. Educational and Psychological Measurement. 20. 141-151. https://doi.org/10.1177/001316446002000116
Kamali N, Sadeghipour A. 2016. Determining the most important factors related to carbon storage in different land uses (Case study: Shahriar, Iran). Watershed Management Research (Pajouhesh & Sazandegi). 111: 2-8. (In Persian). https://doi.org/10.22092/wmej.2016.112319
Khalifehzadeh R, Tamartash RM, Tatian R, Sarajian Maralan MR. 2018. An estimation of topsoil organic carbon by combining factor analysis and multiple regression in semi-steppe rangelands of Lazour, Firouzkooh. Iranian Journal of Range and Desert Research. 25 (3): 699-712. (In Persian). https://doi.org/10.22092/ijrdr.2018.117819
Ma H, Peng M, Yang Z, Yang K, Zhao C, Li K, Guo F, Yang Z, Cheng H. 2024. Spatial distribution and driving factors of soil organic carbon in the Northeast China Plain: Insights from latest monitoring data. Science of The Total Environment. 911. https://doi.org/10.1016/j.scitotenv.2023.168602
Mirzashahi k, Bazargan k. 2015. Soil organic matter management. Soil and Water Research Institute. Technical Publication 535. (InPersian). https://doi.org/10.1016/j.scitotenv.2023.168602
Mondal A, Khare D, Kundu S, Mondal S, Mukherjee S, Mukhopadhyay A. 2017. Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. The Egyptian Journal of Remote Sensing and Space Sciences. 20(1): 61-70. https://doi.org/10.1016/j.ejrs.2016.06.004
Mulder VL, Bruin SD, Schaepman ME, Mayr TR. 2011. The use of remote sensing in soil and terrain mapping: A review. Geoderma. 162 (1): 1-19. https://doi.org/10.1016/j.geoderma.2010.12.018
Nateghi S, Khalifehzadeh R, Souri M, Khodagholi M. 2021. Spatial prediction of soil surface organic carbon using spectral and non-spectral factors (Case study; Asuran Summer Rangeland, Semnan Province). Journal of Range and Watershed Management. 4 (1): 177-188. (In Persian). https://doi.org/10.22059/jrwm.2021.313256.1547
Olaya V. 2009. Basic land-surface parameters. Geomorphometry Concepts, Software, Applications. Developments in Soil Science. 33: 141-169. https://doi.org/10.1016/S0166-2481(08)00006-8
Piccini C, Marchetti A, Francaviglia R. 2014. Estimation of soil organic matter by geostatistical methods: use of auxiliary information in agriculture and environment assessment. Ecological Indicators. 36: 301-314. https://doi.org/10.1016/j.ecolind.2013.08.009
Rousta MJ, Pakparvar M, Soleimanpour SM, Enayati M. 2022. The role of land use and physical properties on soil organic carbon in the flood spreading fields of Kowsar Station. Watershed Management Research. 34-4(133): 35-149. (In Persian). https://doi.org/10.22092/WMRJ.2021.355443.1426
Saha D, Kukal S, Sharma S. 2011. Landuse impacts on SOC fractions and aggregate stability in typic us ochrepts of Northwest India. Plant Soil. 339: 457– 470. https://doi.org/10.1007/s11104-010-0602-0
Schwanghart W, Jarmer T. 2011. Linking spatial patterns of soil organic carbon to topography: A case study from south-eastern Spain. Geomorphology. 126(1): 252-263. https://doi.org/10.1016/j.geomorph.2010.11.008
Stevenson FJ. 1994. Humus Chemistry: Genesis, Composition, Reactions. Second Edition. John Wiley and Sons Pub. 505 p. https://doi.org/10.1021/ed072pA93.6
Tamartash R, Tatian MR, Yousefian M. 2012. The ability of different vegetative forms to carbon sequestration in plain rangeland of Miankaleh. Journal of Environmental Studies. 38 (62):45-54. (In Persian). https://doi.org/ 10.22059/jes.2012.29099
Torkamani F, Piri Sahragard H, PahlavanRad MR, Nohtani M. 2020. Determination of soil organic carbon distribution along with affecting factors using random forest model in Ravang Minab watershed. Agricultural Engineering. 42(4): 89-104. (In Persian).  https://doi.org/10.22055/agen.2020.29872
Wang Q, Shan Y, Shi W, Zhao F, Li Q, Sun P Wua Y. 2024. Assessing spatiotemporal variations of soil organic carbon and its vulnerability to climate change: A bottom-up machine learning approach. Climate Smart Agriculture. 1 (100025): 1-9. https://doi.org/10.1016/j.csag.2024.100025
Wang Y, Fu B, Lü Y, Song C, Luan Y. 2010. Local-scale spatial variability of soil organic carbon and its stock in the hilly area of the Loess Plateau, China. Quaternary Research. 73(1):70-76. https://doi.org/10.1016/j.yqres.2008.11.006
Xiaoguang N, Shaoliang Z, Chengbo Z, Pengke Y, Hao W, Weitao X, Mingke S, Muhammad A. 2024. Key factors influencing the spatial distribution of soil organic carbon and its fractions in Mollisols. Catena. 247: (10) 108522. https://doi.org/10.1016/j.catena.2024.108522
Yu H, Zha T, Zhang X, Nie L, Ma L, Pan Y. 2020. Spatial distribution of soil organic carbon may be predominantly regulated by topography in a small revegetated watershed. CATENA.188: (9).104459. https://doi.org/10.1016/j.catena.2020.104459
Zhang P, Wang Y, Sun H, Qi L, Liu H, Wang Z. 2021. Spatial variation and distribution of soil organic carbon in an urban ecosystem from high-density sampling. Catena. 204 (9): 105364. https://doi.org/10.1016/j.catena.2021.105364