تحلیل فراوانی رخدادهای گرد و غبار شمال دریاچه ارومیه بر پایه تصویرهای سنجش از دور و الگوریتم MAIAC

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مرتع و آبخیزداری، دانشکده منابع‌طبیعی، دانشگاه ارومیه، ارومیه، ایران

2 دانشیار، گروه مرتع و آبخیزداری، منابع‌طبیعی، دانشگاه ارومیه، ارومیه، ایران

10.22092/wmrj.2025.369926.1627

چکیده

مقدمه و هدف
توفان‌های گرد و غبار به‌عنوان یکی از مخاطره‌های زیست‌محیطی، بر سلامت انسان، کشاورزی و پایداری بوم‌سازگان اثرات گسترده‌ای دارند. در سال‌های گذشته، بروز این پدیده در نواحی پیرامون دریاچه ارومیه، به‌ویژه در بخش شمالی آن، به‌شکل قابل توجهی افزایش‌یافته است. این روند ناشی از عامل‌های پرشماری است که مهم‌ترین آن‌ها خشک شدن گسترده بستر دریاچه ارومیه در پی کاهش شدید منابع آبی و تغییرات اقلیمی است. کاهش اندازة آب ورودی به دریاچه و افزایش تبخیر به‌دلیل تغییرات اقلیمی موجب کاهش سطح آب و نمایان شدن بخش گسترده‌ای از بستر دریاچه شده است. امروزه، این بستر خشک‌شده به‌عنوان یک منبع تولید و انتشار ذرات معلق گرد و غبار در منطقه است که ادعاهای زیادی در زمینة گرد و غبار آن بر محیط پیرامون مطرح می­‌شود. ازاین‌رو، پایش دقیق و تحلیل روندهای زمانی و مکانی توفان‌های گرد و غبار در حاشیه شمالی دریاچه ارومیه برای اتخاذ تدابیر مدیریتی و سیاست‌گذاری‌های محیط‌زیستی، اهمیت زیادی دارد. با توجه به اهمیت پایش دقیق این پدیده، بهره­گیری از فناوری‌های سنجش از دور و الگوریتم‌های تصحیح جو مانند MAIAC امکان ارائه تحلیل‌های دقیق­تر و به­روزتر را فراهم می­آورد. در این راستا، هدف اصلی این پژوهش، تحلیل روندهای زمانی و مکانی تغییرات فراوانی روزهای گرد و غبار در حاشیه شمالی دریاچه ارومیه در بازه زمانی ۲۰۰۱ تا ۲۰۲۴ با استفاده از داده‌های اصلاح‌شده الگوریتم گرد و غبار MAIAC بود. با استفاده از نتایج این پژوهش فهم فرآیندهای موثر در تولید و انتشار گرد و غبار بهبودیافته و راهکارهای مدیریتی مناسبی برای کاهش اثرات منفی آن می‌توان ارائه داد. 
مواد و روش‌ها
در این پژوهش، تصویرهای ماهواره‌ای MODIS با تفکیک متوسط در بازه زمانی ۲۰۰۱ تا ۲۰۲۴ برای حاشیه شمالی دریاچه ارومیه جمع‌آوری شد. با بهره‌گیری از قابلیت زیاد الگوریتم بازیابی هواویز (آئروسل) مایاک (MAIAC) در تفکیک دقیق ذرات معلق در هوا، روزهای گرد و غبار شناسایی شدند. داده‌های استخراج‌شده با سامانه گوگل ارث انجین (GEE) و نرم‌افزار ArcMap (نسخه 8/10) تحلیل شدند و برپایة تعداد روزهای گرد و غبار به چهار طبقه فراوانی کم (50–۰ روز گرد و غباری در سال) (طبقه 1)، متوسط (100–50 روز گرد و غباری در سال) (طبقه 2)، زیاد (150–۱00 روز گرد و غباری در سال) (طبقه 3) و بسیارزیاد (بیش از 150 روز گرد و غباری در سال) (طبقه 4) تقسیم شدند. سپس، نقشه‌های توزیع مکانی و زمانی هر طبقه با دقت تهیه شد. همچنین، به‌منظور شناسایی و دسته‌بندی سال‌هایی با الگوهای مشابه از دیدگاه فراوانی روزهای گرد و غبار، از روش خوشه‌بندی K-Means در نرم‌افزار SPSS (نسخه 30) استفاده شد. با استفاده از این تحلیل، سال‌ها برپایة فراوانی‌های مشابه در گروه‌های خوشه‌ای به‌خوبی تفکیک شدند.
نتایج و بحث
نتایج این پژوهش نشان داد که تغییرات پراکنش مکانی و شدت رویدادهای گرد و غبار در بازه زمانی ۲۰۰۱ تا ۲۰۲۴ قابل توجه بود. در سال‌های ابتدایی پژوهش (2008-2001)، فراوانی رخداد گرد و غبار در طبقه کم بود، اما از سال ۲۰۱۲ به بعد، مساحت طبقه‌های با فراوانی متوسط و زیاد، به‌طور چشمگیری افزایش یافت. هرچند در برخی سال‌ها مانند ۲۰۱۹ و ۲۰۲۰ فراوانی گرد و غبار، نسبتاً کاهش یافت، اما در سال‌های گذشته روند این پدیده افزایشی بود. نتایج تحلیل خوشه‌ای با استفاده از نرم‌افزار SPSS (نسخه 30) نشان داد که بیشترین فراوانی روزهای گرد و غبار در سال‌های ۲۰۱۴-۲۰۱۵ و ۲۰۱۵-۲۰۱۶ مربوط به گروه خوشه ۲ بود. همچنین کمترین فراوانی روزهای گرد و غبار در سال‌های ۲۰۰۱-۲۰۰۲ تا ۲۰۰۷-۲۰۰۸، ۲۰۱۹-۲۰۲۰ و ۲۰۲۰-۲۰۲۱ مربوط به خوشه ۴ بود. همچنین، نتایج اعتبارسنجی با استفاده از داده‌های ایستگاه همدیدی شبستر (نزدیک‌ترین ایستگاه در شمال دریاچه ارومیه) نشان داد که ارتباط میان داده‌های ایستگاهی (کدهای 5، 6 و 8) و مساحت پیکسل‌های با فراوانی زیاد گرد و غبار در تصویرهای سنجش از دور ضعیف و از دیدگاه آماری معنادار نبود. این یافته‌ها بیانگر آن بود که ذرات گرد و غبار برخاسته از بستر خشک‌شده دریاچه قابلیت انتقال به فاصله‌های دور را نداشته و در فاصله­ای بسیار نزدیک از محل برخاست خود فرو می­نشینند.
نتیجه‌گیری و پیشنهادها
نتایج بررسی فراوانی مکانی و زمانی پدیده گرد و غبار در سال‌های ۲۰۰۱ تا ۲۰۲۴ در حاشیه شمالی دریاچه ارومیه نشان داد که تغییرات سالانه فراوانی روزهای گرد و غبار در منطقه نامبرده، چشم‌گیر بود. ازاین‌رو، نقش عامل‌های اقلیمی، زمین­شناختی، خاک­شناسی و محیطی حائز اهمیت است. نتایج این پژوهش بیانگر ضرورت پایش مستمر و به‌روزرسانی داده‌ها در منطقه نامبرده است تا روند آسیب­زای رخدادهای گرد و غبار در منطقه به موقع شناسایی و مدیریت شوند. از این‌رو، پیشنهاد می‌شود از نتایج این پژوهش برای طراحی راهبردهای مدیریتی و کاهش مخاطره‌های زیست‌محیطی در منطقه استفاده شود تا تصمیم‌گیری‌های مطلوبی در سطح محلی و منطقه‌ای انجام شود. همچنین، پیشنهاد می‌شود  به‌روزرسانی داده‌ها در حاشیه شمالی دریاچه ارومیه به‌طور مستمر انجام شود تا روندهای آسیب‌زا به‌موقع شناسایی و تصمیم‌گیری‌های محلی و منطقه‌ای با دقت و اثرگذاری بیشتر انجام شود. از سوی دیگر، با تلفیق اطلاعات اقلیمی، زمین‌شناختی و خاک‌شناسی می‌توان به توسعه سامانه‌های هشدار سریع و مدیریت پیشگیرانه کمک کرد و اثرات منفی این پدیده بر محیط زیست و جامعه‌های محلی را به حداقل رساند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Dust Event Frequency in the North Lake Urmia Based on MAIAC-Derived Aerosol Retrievals

نویسندگان [English]

  • Maryam Fathi 1
  • Hesam Ahmady Birgani 2
1 Masters’ Student, Rangeland and Watershed Management Group, Faculty of Natural Resources, Urmia University, Urmia, Iran
2 Associate Professor, Rangeland and Watershed Management Department, Natural Resources, Urmia University, Urmia, Iran
چکیده [English]

Introduction and Goal
Dust storms, as one of the major environmental hazards, have widespread impacts on human health, agriculture, and ecosystem sustainability. In recent years, the incidence of this phenomenon has increased significantly in the areas surrounding Lake Urmia, particularly in the northern parts. This trend is due to numerous factors, the most important of which is the widespread drying of the bed of Lake Urmia following a severe reduction in water resources and climate change. The decrease in the amount of water entering the lake and the increase in evaporation duo to climatic change have caused the water level to drop and a large portion of the lake bed to become visible. Today, this dried bed serves as a source of dust particles in the region, with many claims being made about the dust it causes to the surrounding environment. Therefore, accurate monitoring and spatiotemporal trends of dust storm on the northern margin of Lake Urmia is a great importance for adopting management measures and environmental policies. Given the importance of accurate monitoring of this phenomenon, the use of remote sensing technologies and atmospheric correction algorithms such as MAIAC allows for more accurate and up-to-date analyses. In this regard, the main objective of this research was to analyze the temporal and spatial patterns trends in the frequency of dust day on the northern Lake Urmia during the period 2001 to 2024 using MAIAC-corrected dust algorithm data. Using the results of this research, understanding of the processes affecting dust generation and transport has been improved and appropriate management strategies can be provided to reduce its negative effects.
Materials and Methods
In this study, moderate resolution MODIS satellite images were collected between 2001 and 2024 for the northern margin of Lake Urmia. By utilizing the high capability of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) in accurately separating airborne particles, dusty days were identified. The extracted data were analyzed using Google Earth Engine (GEE) platform and ArcMap software (version 10.8) and divided into four frequency classes based on the number of dust days: low (0–50 dusty days per year) (class 1), moderate (50–100 dusty days per year) (class 2), high (100–150 dusty days per year) (class 3), and very high (more than 150 dusty days per year) (class 4). Subsequently, spatial and temporal distribution maps of each class were carefully prepared. Also, in order to identify and categorize years with similar patterns in terms of the frequency of dust day, the K-Means clustering method was used in SPSS software (version 30). Using this analysis, years were well separated into cluster groups based on similar frequencies.
Results and Discussion
The results of this study showed that changes in the spatial distribution and intensity of dust events were significant between 2001 and 2024. In the early years of the study (2001-2008), the frequency of dust occurrence on the floor was low, but from 2012 onwards, the area of ​​floors with medium and high frequency increased significantly. Although in some years, such as 2019 and 2020, the abundance of dust decreased relatively, in previous years the trend of this phenomenon was increasing. The results of cluster analysis using SPSS software (version 30) showed that the highest frequency of dusty days in 2014-2015 and 2015-2016 belonged to cluster group 2. Also, the lowest frequency of dusty days in the years 2001-2002 to 2007-2008, 2019-2020, and 2020-2021 was related to cluster 4. Also, validation result using data from the Shabestar synoptic station, (the nearest station to the northern margin of Lake Urmia), indicated that the relationship between station observations (codes 5, 6, and 8) and the area of pixels with high dust storm frequency in remote sensing image was weak and not statistically insignificant. These findings indicated that dust particles rising from the dried lake bed are unable to be transported over long distances and settle very close to their point of origin.
Conclusion and Suggestions
The result of the study of the spatial and temporal frequency of dust storm events from 2001 to 2024 on the northern margin of Lake Urmia showed that the annual changes in the frequency of dusty days in the mentioned region were significant. Therefore, the role of climatic, geological, soil and environmental factors is important. The results of this study indicate the need for continuous monitoring and updating of data in the mentioned region so that the damaging trend of dust events in the region can be identified and managed in a timely manner. Therefore, it is suggested that the results of this research be used to design management strategies and reduce environmental risks in the region so that favorable decisions can be made at the local and regional levels. It is also suggested that data updates be carried out continuously on the northern shore of Lake Urmia to identify harmful trends in a timely manner and to make local and regional decisions with more accuracy and effectiveness. On the other hand, by integrating climatic, geological, and soil information, it is possible to help develop early warning systems and preventive management and minimize the negative effects of this phenomenon on the environment and local communities.

کلیدواژه‌ها [English]

  • Dust storm frequency
  • K-Means clustering
  • Lake Urmia
  • MAIAC algorithm
  • remote sensing
 Abadi ARS, Hamzeh NH, Shukurov K, Opp C, Dumka UC. 2022. Long-term investigation of aerosols in the Urmia Lake region in the Middle East by ground-based and satellite data in 2000–2021. Remote Sensing. 14(15):3827. https://doi.org/10.3390/rs14153827
Abadi ARS, Shukurov KA, Hamzeh NH, Kaskaoutis DG, Opp C, Shukurova LM, Ghasabi Z. 2024. Dust events over the Urmia Lake Basin, NW Iran, in 2009–2022 and their potential sources. Remote Sensing. 16(13): 2384. https://doi.org/10.3390/rs16132384
Afshari M, Vali A. 2024. Application of Maximum Entropy Model and Remote Sensing Technique to predict susceptible areas to dust storms in Isfahan Province, Iran. ECOPERSIA, 12(1): 25–37.
Ahmady-Birgani H. 2025. Conceptualizing dust emission areas and hotspots over the Aeolian landforms via remote-sensing aerosol algorithms (Case study: Lake Urmia, a major hypersaline lake in the Middle East). Geoscience Letters, 12(1):28. https://doi.org/10.1186/s40562-025-00287-4
Ahmady-Birgani, H., Ravan, P., Yao, Z., & Afrasinei GM. 2023. Understanding saline lake sand dunes dynamics: Coupling remote sensing techniques and field studies. Catena. 232:107424. https://doi.org/10.1016/j.catena.2023.107424
Ahmady-Birgani H, Naseri HR. 2023. Deserts, sand dunes and sand seas of Iran. In Sand Dunes of the Northern Hemisphere: Distribution, Formation, Migration and Management. CRC Press. pp. 219–234.
Ahmady-Birgani H, Ravan P, Schlosser JS, Cuevas-Robles A, Azadi-Aghdam M, Sorooshian A. 2021. Is there a relationship between Lake Urmia saline lakebed emissions and wet deposition composition in the Caucasus region? ACS Earth and Space Chemistry. 5(10): 2970–2985. https://doi.org/10.1021/acsearthspacechem.1c00205
Ahmady-Birgani H, Ravan P, Schlosser JS, Cuevas-Robles A, Azadi-Aghdam M, Sorooshian A. 2020. On the chemical nature of wet deposition over a major desiccated lake: Case study for Lake Urmia basin. Atmospheric Research. 234: 104762. https://doi.org/10.1016/j.atmosres.2019.104762
Ahmady-Birgani H, Engelbrecht J, Bazgir M. 2019. How different source regions across the Middle East change aerosol and dust particle characteristics. Desert. 24(1):61–73. https://doi.org/10.22059/jdesert.2019.72441
Ahmady-Birgani H, Feiznia S. 2016. Chemical composition of TSP dust-sized as an indicator in geochemical fingerprinting of sediments. Journal of Natural Environment. 69(2):283–301. https://doi.org/10.22059/jne.2016.59750
Ahmady-Birgani H, Mosavi S, Sani S. 2016. The impact of meteorological parameters on SO₂ pollutant accumulation over Urmia City. Environment and Water Engineering. 1(1):95–110.
Ahmar AS, Napitupulu D, Rahim R, Hidayat R, Sonatha Y, Azmi M. 2018. Using K-means clustering to cluster provinces in Indonesia. Journal of Physics: Conference Series. 1028: 012006. https://doi.org/10.1088/1742-6596/1028/1/012006
Awadh SM. 2023. Impact of North African sand and dust storms on the Middle East using Iraq as an example: Causes, sources, and mitigation. Atmosphere. 14(1): 180. https://doi.org/10.3390/atmos14010180
Baghbanan P, Ghavidel Y, Farajzadeh M. 2020. Temporal long-term variations in the occurrence of dust storm days in Iran. Meteorology and Atmospheric Physics. 132(6): 885–898. https://doi.org/10.1007/s00703-020-00722-z
Boroughani M, Pourhashemi S, Hashemi H, Salehi M, Amirahmadi A, Asadi MAZ, Berndtsson R. 2020. Application of remote sensing techniques and machine learning algorithms in dust source detection and dust source susceptibility mapping. Ecological Informatics. 56:101059. https://doi.org/10.1016/j.ecoinf.2020.101059
Borda LG, Cosentino NJ, Iturri LA, Garcia MG, Gaiero DM. 2022. Is dust derived from shrinking saline lakes a risk to soil sodification in southern South America? Journal of Geophysical Research: Earth Surface.127(4): e2021JF006585. https://doi.org/10.1029/2021JF006585
Dey R, Sharma SB, Thakkar MG, Sarangi RK, Chowdhury A, Naz A. 2025. Phosphorus transitions driven by cyclone Biparjoy linked Middle East–North Africa (MENA) and Indian Thar Desert dust storm pathways in Asia’s largest grassland. Scientific Reports. 15(1): 4321. https://doi.org/10.1038/s41598-025-41358-1
Di Antonio L, Di Biagio C, Foret G, Formenti P, Siour G, Doussin JF, Beekmann M. 2023. Aerosol optical depth climatology from the high-resolution MAIAC product over Europe: Differences between major European cities and their surrounding environments. Atmospheric Chemistry and Physics. 23(19): 12455–12475. https://doi.org/10.5194/acp-23-12455-2023
Farhan M, Heikal J. 2024. Used car customer segmentation using k-means clustering model with SPSS: Case study Caroline. Jurnal Indonesia Sosial Sains. 5(03): 543–559. https://doi.org/10.36084/jiss.v5i03
Feizizadeh B, Lakes T, Omarzadeh D, Sharifi A, Blaschke T, Karimzadeh S. 2022. Scenario-based analysis of the impacts of lake drying on food production in the Lake Urmia Basin of Northern Iran. Scientific Reports. 12(1): 6237. https://doi.org/10.1038/s41598-022-10226-2
Ghasempour R, Aalami MT, Saghebian SM, Kirca VO. 2024. Analysis of spatiotemporal variations of drought and soil salinity via integrated multiscale and remote sensing-based techniques (Case study: Urmia Lake Basin). Ecological Informatics. 81: 102560. https://doi.org/10.1016/j.ecoinf.2024.102560
Gibert-Brunet E, Tudryn A, Kong T, Tucholka P, Motavalli-Anbaran SH, Marlin C, Karimi G. 2023. Salt wedges and trapped brines of low-latitude endoreic saline lakes as potential modulators of GHG emission. Scientific Reports, 13(1): 21118. https://doi.org/10.1038/s41598-023-48052-9
Ge Y, Abuduwaili J, Ma L. 2019. Lakes in arid land and saline dust storms. E3S Web of Conferences. 99: 01007. https://doi.org/10.1051/e3sconf/20199901007
Hall DK, Kimball JS, Larson R, DiGirolamo NE, Casey KA, Hulley G. 2023. Intensified warming and aridity accelerate terminal lake desiccation in the Great Basin. Earth and Space Science. 10(1): e2022EA002630. https://doi.org/10.1029/2022EA002630
Jahani Y, Jambarsang S, Bahrampour A. 2023. Longitudinal data clustering methods: A systematic review. Journal of Biostatistics and Epidemiology. 9(4): 396–411.
Jiang J, Liu J, Jiao D, Zha Y, Cao S. 2023. Evaluation of MODIS DT, DB, and MAIAC aerosol products over different land cover types in the Yangtze River Delta of China. Remote Sensing. 15(1): 275. https://doi.org/10.3390/rs15010275
Kok JF, Adebiyi AA, Albani S, Balkanski Y, Checa-Garcia R, Chin M, Wan JS. 2021. Contribution of the world's main dust source regions to the global cycle of desert dust. Atmospheric Chemistry and Physics. 21(10): 8169–8193. https://doi.org/10.5194/acp-21-8169-2021
Kong T, Tudryn A, Gibert-Brunet E, Tucholka P, Motavalli-Anbaran SH, Lankarani M, Dufaure O. 2023. Sediment flux and early diagenesis inferred from high-resolution XRF-CS data and iron and arsenic sulfides during the last 30 kyr in Lake Urmia, Iran. Sedimentary Geology. 453: 106450. https://doi.org/10.1016/j.sedgeo.2023.106450
Mahmoudi L, Ikegaya N. 2023. Identifying the distribution and frequency of dust storms in Iran based on long-term observations from over 400 weather stations. Sustainability. 15(16):12294. https://doi.org/10.3390/su151612294
Middleton N. 2019. Variability and trends in dust storm frequency on decadal timescales: Climatic drivers and human impacts. Geosciences. 9(6): 261. https://doi.org/10.3390/geosciences9060261
Neira M, Erguler K, Ahmady-Birgani H, Al-Hmoud ND, Fears R, Gogos C, Christophides G. 2023. Climate change and human health in the Eastern Mediterranean and Middle East: Literature review, research priorities and policy suggestions. Environmental Research. 216: 114537. https://doi.org/10.1016/j.envres.2022.114537
Opp C, Groll M, Abbasi H, Foroushani MA. 2021. Causes and effects of sand and dust storms: What has past research taught us? A survey. Journal of Risk and Financial Management. 14(7): 326. https://doi.org/10.3390/jrfm14070326
Rashki A, Middleton NJ, Goudie AS. 2021. Dust storms in Iran–Distribution, causes, frequencies and impacts. Aeolian Research. 48: 100655. https://doi.org/10.1016/j.aeolia.2020.100655
Ravan P, Ahmady‐Birgani H, Solomos S, Yassin MF, Abasalinezhad H. 2022. Wet scavenging in removing chemical compositions and aerosols: A case study over the Lake Urmia. Journal of Geophysical Research: Atmospheres. 127(6): e2021JD035896. https://doi.org/10.1029/2021JD035896
Ravan P, Ahmady-Birgani H, Sorooshian A. 2019. Spatial mapping of elemental variabilities of atmospheric particulates throughout the Lake Urmia basin. Journal of the Earth and Space Physics. 45(3): 667–686. https://doi.org/10.22059/jesphys.2019.268885.1007097
Robinson MC, Schueth K, Ardon-Dryer K. 2024. Spatial, temporal, and meteorological impact of the 26 February 2023 dust storm: Increase in particulate matter concentrations across New Mexico and West Texas. Atmospheric Chemistry and Physics. 24(23): 13733–13750. https://doi.org/10.5194/acp-24-13733-2024
Rostami S, Alijanpour A, Banj Shafiei A, Ahmady-Birgani H, Beygi Heidarlou H. 2023. Investigation on biological activities for combating desertification in the western shores of Lake Urmia, Northwest Iran. Journal of Arid Land. 15(3): 297–309. https://doi.org/10.1007/s40333-023-0094-1
Sebghati M, Ahmady-Birgani H, Moghaddam A. 2016. The calculation of continuity and intensity of droughts using Modified SPEI Index (Case study: Tabriz and Urmia Cities). Environment and Water Engineering. 2(2): 188–195.
Sharifi A, Murphy LN, Pourmand A, Clement AC, Canuel EA, Beni AN, Ahmady-Birgani H. 2018. Early-Holocene greening of the Afro-Asian dust belt changed sources of mineral dust in West Asia. Earth and Planetary Science Letters. 481: 30–40. https://doi.org/10.1016/j.epsl.2017.10.009
Singh A, Yadav A, Rana A. 2013. K-means with three different distance metrics. International Journal of Computer Applications. 67(10):13–17. https://doi.org/10.5120/11430-6785
Soleimani A, Atafar Z, Nemati-Mansour S, Ahmed M, Ahmady-Birgani H, Ravan P, Miri M, Mohammadi A. 2024. Impact of PAHs compounds on air quality in Maragheh City: Probabilistic risk assessment and source apportionment. Toxicology Reports. 13: 101686. https://doi.org/10.1016/j.toxrep.2024.101686
World Meteorological Organization. 2023. WMO Airborne Dust Bulletin No. 7 – September 2023. Geneva: World Meteorological Organization.
Yang L, Hu Z, Huang Z, Zhang Y, Hu M. 2023. Regional and seasonal variation of dust aerosol over North Africa and the Middle East: Analysis based on satellite data and ground measurements. Atmospheric Environment. 296: 119733. https://doi.org/10.1016/j.atmosenv.2022.119733
Zeinali B, Juq FVG, Teymouri M, Das S, Ruhi F, Sihag P. 2023. Selection of the best clustering technique in order to zone the frequency of dust storms in Iran. Arabian Journal of Geosciences. 16(1):11389. https://doi.org/10.1007/s12517-022-11389-7
Zhang L, Zhang H, Cai X, Song Y, Mamtimin A, He Q. 2024. Physical mechanisms of deep convective boundary layer leading to dust emission in the Taklimakan Desert. Geophysical Research Letters. 51(10): e2024GL108521. https://doi.org/10.1029/2024GL108521