ارزیابی فراسنجه‌های هیدرولیکی آبخوان دشت ملکان با استفاده از مقاومت الکتریکی

نوع مقاله : پژوهشی

نویسندگان

1 دکترای هیدروژئولوژی، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

2 استاد هیدروژئولوژی، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

3 استاد هیدروژئولوژی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

چکیده

شناخت آبخوان و تعیین فراسنجه‌های هیدرولیکی آن برای ارزیابی و مدیریت منابع آب‌های زیرزمینی ضروری است. در این پژوهش به بررسی زمین‌آب‌شناسی و برآورد فراسنجه‌های هیدرولیکی آبخوان دشت ملکان در استان آذربایجان­شرقی با استفاده از داده‌های مقاومت ویژه پرداخته شده است. برای یافتن توزیع مقاومت الکتریکی زیرسطحی واقعی­تر، مقاومت الکتریکی وارون با استفاده از برنامه­های وارون­سازی مقاومت ویژه مدل­سازی شد. مقاومت حقیقی و ضخامت لایه­های زیرسطحی با تعیین ساختار منحنی­های ژرفاپیمایی مقاومت و تعیین منحنی­های الکتریکی منطبق با داده­های صحرایی تعیین شد. ضخامت‌ متوسط آبرفت 75 متر، و مقدار متوسط آب‌دهی ویژه و تخلخل آبخوان به­ترتیب 0/042 و 0/32 برآورد شد. مقاومت عرضی در هر ژرفایابی محاسبه شد و نتایج همبستگی فراسنجه‌های مقاومت عرضی آبخوان، و توان انتقال به‌دست‌آمده از آزمون آب‌کشی، انطباقی پذیرفتنی بین این فراسنجه‌ها نشان داد. مقایسه­ی نتایج روش زمین‌فیزیکی و نتایج آزمون آب‌کشی نشان داد که ارزیابی فراسنجه‌های هیدرولیکی با مقطع‌نگاری پرتوی مقاومت ویژه‌ی الکتریکی پذیرفتنی است، به­طوری­که می‌توان با تلفیق داده‌های به­دست‌آمده از زمین‌فیزیک، آزمون آب‌کشی و پژوهش‌های زمین­شناسی، نتایجی دلخواه را برای ارزیابی و مدیریت بهینه­ی منابع آب زیرزمینی به‌دست آورد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Malekan Plain Aquifer Hydraulic Parameters Using Electrical Resistivity

نویسندگان [English]

  • Farahnaz Azizi 1
  • Asghar Asghari Moghaddam 2
  • Amirhossein Nazemi 3
1 Ph.D. of Hydrogeology, Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
2 Professors of Hydrogeology, Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
3 Professors of Hydrogeology, Department of Irrigation & Drainage, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
چکیده [English]

Estimating aquifer hydraulic parameters is essential for the assessment and management of groundwater resources. In this paper, the hydraulic parameters of Malekan Plain Aquifer were estimated using the resistivity data. The inverse electrical resistivity model to provide the best distribution of subsurface electrical resistance, using the inverse resistivity programs has been carried out. The relative thickness of subsurface layers using the characterization of electrical resistance curves was determined. The average thicknesse of, the alluvial aquifer and its porosity (ϕ) and specific yield (Sy) were estimated at 75 meters, 0.32 and 0.042, respectively. Results indicate a strong correlation between aquifer transmissivity and the transverse presence of resistance. The estimated values from both geoelectrical and pumping test methods indicate that the results of electrical resistivity tomography method are acceptable. Therefore, using suitable results may be obtained a combination of pumping test, geological studies and geophysical methods. The aquifer parameters obtained from the resistivity sounding and pumping test data may be used for an optimal management and assessment of groundwater resources.

کلیدواژه‌ها [English]

  • Electrical resistivity
  • porosity
  • pumping test
  • specific yield
Altafi Ddadgar M, Mohammadzade H, Bahrami R. 2012. Estimation of bojnourd aquifer hydraulic parameters using vertical electrical sounding (VES) data. 6(20): 75–85. (In Persian).
Archie GE. 1942. The Electrical resistivity log as an aid in determining some reservoir characteristics. American Instrument of Mining and Metallurgical Engineering. 146: 54–62.
Atkins ER, Smith GH. 1961. The significance of particle shape in formation resistivity factor-porosity relationships. Journal of Petroleum Technology. 13(03): 285–291.
Azizi F, Asghari Moghaddam A, Nazemi AH. 2017. Evaluation of groundwater salinization and delineation of ion offspring in Malekan Plain Coastal Aquifer Using Ionic Ratios. Journal of Environmental Studies. 43(3): 437–454. doi: 10.22059/jes.2018.226676.1007391. (In Persian).
Bellanova J, Calamita G, Giocoli A, Luongo R, Macchiato M, Perrone A, Piscitelli S. 2018. Electrical resistivity imaging for the characterization of the Montaguto landslide (Southern Italy). Engineering Geology. 243: 272–281.
Cardarelli E, Fischanger F. 2006. 2D data modelling by electrical resistivity tomography for complex subsurface geology. Geophysical Prospecting. 54(2): 121–133.
Dannowski G. Yaramanci U. 1999. Estimation of water content and porosity using combined radar and geoelectrical measurements. European Journal of Environmental and Engineering Geophysics. (4): 1–13.
Devaraj N, Chidambaram S, Panda B, Thivya C, Thilagavathi R, Ganesh N. 2018. Geo-electrical approach to determine the lithological contact and groundwater quality along the KT boundary of Tamilnadu, India.Modeling Earth Systems and Environment. 4(1): 269–279.
Dovetone JH. 1986. Log analysis of subsurface geology. New York: Wiley & Sons.
Frohlich RK, Kelly WE. 1988. Estimates of specific yield with the geoelectrical resistivity method in glacial aquifers. Journal of Hydrology. 97(1–2): 33–44.
Frohlich RK, Parke CD. 1989. The electrical resistivity of vadose zone – field surve. Ground Water. 27 (4): 524–530.
Griffith DH, Barker RD. 1993. Two-dimensional resistivity imaging and modeling in areas of complex geology. Journal of Applied Geophysics. 29: 211–226.
Heigold C. Gilkeson P. Robert H. Keros C. Philip CR. 1979. Aquifer transmissivity from surficial electrical methods. Ground Water. 17(4): 338–345.
Huntley D. 1986. Relations between permeability and electrical resistivity in granular aquifers. Ground water. 24(4): 466-474. doi: 10.1111/j.1745-6584.1986.tb01025.
Kazakis N. Pavlou A. Vargemezis G. Voudouris KS. Soulios G. Pliakas F. Tsokas G. 2016. Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece. Science of the Total Environment. 543: 373–387.
Kelly WE. 1977. Geoelectrical sounding for estimating aquifer hydraulic conductivity. Ground Water. 15: 420–424.
Loke MH, Chambers JE, Rucker DF, Kuras O, Wilkinson PB. 2013. Recent developments in direct- current geoelectrical imaging method, Journal of Applied Geophysics. 95: 135–156.
Loke MH. 1999. Electrical imaging surveys for environmental and engineering studies: A practical guide to 2D and 3D surveys; the theory and practice of electrical imaging. EEGS European Section 5th Meeting, Badapast Hungary.
Mita, M, Glazer M, Kaczmarzyk R, Dąbrowski M, Mita K. 2018. Case study of electrical resistivity tomography measurements used in landslides investigation, Southern Poland. Contemporary Trends in Geoscience. 7(1): 110–126.
Mondal NC, Devi AB, Raj PA, Ahmed S, Jayakumar KV. 2016. Estimation of aquifer parameters from surfacial resistivity measurement in a granitic area in Tamil Nadu. Current Science. 111(3): 524–534.
Moreira CA, Montenegro Lapola M, Carrara A. 2016. Comparative analyzes among electrical resistivity tomography arrays in the characterization of flow structure in free aquifer. Geofísica Internacional. 55(2): 119–129.
Nakhaei M, Lashkaripour G. 2004. Estimation of porosity and specific yield of Shooru aquifer by resistivity method. Materials & Energy. 18 (57): 191–202. (In Persian).
Nasseri HR, Alijani F. 2012. Analysis of karst formation systems in Asmari and Ilam-Sarvak formations in southwest of Izeh. Advanced Geology Journal. 2 (3): 94–104. (In Persian).
Nasseri HR, Alijani F, Nakhaei M. 2012. Ground water exploration in karst terrains using geoelectrical tomography, South West Izeh. Journal of Geoscience. 22(86): 107–118. doi: 10.22071/gsj.2012.54074. (In Persian).
Niwas S, Singhal DC. 1981. Estimation of aquifer transmissivity from Dar Zarrouk parameters in porous media. Hydrology. 50: 393–399.
Niwas S, Singhal DC. 1985. Aquifer transmissivity of porous media from resistivity data, Hydrology. 82: 143–153.
Niwas S, Tezkan B, Israil M. 2011. Aquifer hydraulic conductivity estimation from surface geoelectrical measurements for Krauthausen test site. Hydrogeology Journal. 19: 307–315.
Panda KP, Sharma SP, Jha MK. 2018. Mapping lithological variations in a river basin of West Bengal, India using electrical resistivity survey: Implications for artificial Recharge. Environmental Earth Sciences. 77 (17): 626–637.
Sharma S, Verma GK. 2015. Inversion of electrical resistivity data: A Review. World Academy of Science, Engineering and Technology. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering. 9(4): 392–398.
Sultan SA, Santos FAM. 2007. 1D and 3D resistivity inversions for geotechnical investigation. Journal of Geophysics and Engineering. 5(1): 1–11.
Taylor-Smith D. 1971. Acoustic and electric techniques for sea-floor sediment identification: Proceedings of the International Symposium on Engineering Properties of the Sea-Floor and their Geophysical Identification. Seattle, Washington. pp. 253–267.
Thiagarajan S, Rai SN, Kumar D, Manglik A. 2018. Delineation of groundwater resources using electrical resistivity tomography. Arabian Journal of Geosciences. 11(9): 212–228. 
Todd DK. 1980. Groundwater Hydrology. New York: John Wiley.
Urish DW. 1981. Electrical resistivity-hydraulic conductivity relationships in glacial out-wash aquifers. Water Resources Research. 17(5): 1401–1408.
Windle D, Wroth CP. 1975. Electrical resistivity method for determining volume changes that occur during a pressuremeter test. In Situ Measurement of Soil Properties. 1(4): 497–510.
Wong P Z, Koplik J, Tomanic JP. 1984. Conductivity and permeability of rocks. Physical Review B. 30(11): 6606–6614.
Zhang X, Zhao M, Wang K, Liu P, Liu H. 2016. Application of 3D electrical resistivity tomography for diagnosing leakage in earth rock-fill dam. Engineering. 8(05): 269–275.
Zhou W, Beck BF, Adams AL. 2002. Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environmental Geology. 42(8): 922–928.
Zhu L, Gong H, Chen Y, Li X, Chang X, Cui Y. 2016. Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data. Scientific Reports. 6.1.-8.  22224. DOI: 10.1038/srep22224.