بهبود وضوح مکانی داده‌های رطوبت خاک ماهواره ای SMAP با روش تلفیق رادار- تابش‌سنج در آبخیز فیروزآباد اردبیل

نوع مقاله : پژوهشی

نویسندگان

1 دانش‌آموخته دکتری علوم و مهندسی آبخیزداری، دانشکده‌ی منابع طبیعی، دانشگاه تربیت ‌مدرس

2 دانشیار گروه مهندسی آبخیزداری، دانشکده‌ی منابع طبیعی، دانشگاه تربیت‌ مدرس

3 استادیار گروه سنجش ازدور و GIS، دانشکده‌ی علوم انسانی، دانشگاه تربیت ‌مدرس

چکیده

امروزه دستیابی به برآوردهای رﻃﻮﺑﺖ ﺧﺎک سطحی با روشﻫﺎی سنجش از دور در ﻣﻨﻄﻘﻪیی ﮔﺴﺘﺮده‎ با صحت زیاد و در ﻣﻘﻴﺎس زمانی کم‌تر از سه روز امکان‌پذیر شده‌است، اما اندازه‌ی پیکسل این داده‌ها بزرگ‌ است. این پژوهش با هدف ریزمقیاس‌سازی داده‌های رطوبت خاک ماهواره‌ی اسمپ و با داده‌های رادار سنتینل-1، با روش تلفیق رادار-تابش‌سنج در آبخیز فیروزآباد استان اردبیل انجام شد. در این روش با فرض ارتباط خطی بین رطوبت خاک از تابش‌سنج (مقدار تتا در پیکسل بزرگ) با پس‌پراکنش رادار (سیگمانات)، ابتدا تصویر رادار به اندازه‌ی پیکسل یک کیلومتر و نه کیلومتر (پیکسل بزرگ) تبدیل شد. سپس در هر پیکسل بزرگ با برقراری ارتباط خطی بین گروه زمانی رطوبت خاک و مقادیر پس‌پراکنش رادار، ضرایب آلفا و بتا به روش وایازی محاسبه شد. با روش تلفیق رادار-تابش‌سنج رطوبت خاک ریزمقیاس با اندازه‌ی پیکسل یک کیلومتر تهیه‌ شد. مقدار ریشه‌ی میانگین مربعات خطای نااریب به‌دست‌آمده از اعتبارسنجی روش ریزمقیاس‎سازی 0/039 است و بیان‌گر صحت خوب داده‌های رطوبت خاک با اندازه‌ی پیکسل یک کیلومتر است. ﻣﻘدار ریشه‌ی میانگین مربعات خطا نیز 0/043 و ﻧﺰدﻳﻚ ﺑﻪ ﻣﻘﺪار ﻫﺪف مأموریت اسمپ (ریشه میانگین مربعات خطا 0/05) برای داده‌های یک کیلومتر است. با توجه به محدودبودن داده‌ی رطوبت خاک به نقاط اندازه‌گیری در برخی ایستگاه‌های هواشناسی و کشاورزی کشور و لزوم تهیه‌ی نقشه‌های پیوسته‌ی مکانی در مساحت‌های زیاد، داده‌های رایگان ماهواره‌ی اسمپ و بررسی ریزمقیاس‌سازی آن با داده‌های رادار سنتینل-1 برای کاربرد در مقیاس محلی و منطقه‌یی می‌تواند ابزاری کارآمد و کم‌هزینه در بخش پژوهش و اجرا باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Improving Spatial Resolution of SMAP Surface Soil Moisture through the Synergy of Radar-Microwave Observations at the Firoozabad Watershed, Ardabil

نویسندگان [English]

  • Ayoob Karami 1
  • Hamid Reza Moradi 2
  • Ali Jafar Mousivand 3
1 Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Iran
2 Associate Professor, Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Iran
3 Assistant Professor, Department of Remote Sensing and GIS, Tarbiat Modares University, Iran
چکیده [English]

Surface soil moisture retrieval using microwave remote sensing, as the most promising method, has been highly valued due to its great accuracy and temporal resolution in broad scales. However, its coarse resolution limits regional scale applications. This study aims to apply the optional downscaling algorithm to generate high resolution soil moisture (θf) over Firoozabad Watershed, Ardabil, Iran. The algorithm integrates the advantage of Sentinel-1 (S-1) radar and the SMAP Radiometer soil moisture to make a linear correlation between the satellite soil moisture (θc) and the radar backscatter (σo) at each coarse pixel. The outputs were compared with the soil moisture measurements collected from individual points in the study area. The values of 0.043 cm3/cm3 and 0.039 cm3/cm3, respectively, were obtained for RMSE and UnbRMSE at 1 km resolution. This result are close to the SMAP’s downscaled target accuracy (RMSE = 0.05, cm3/cm3). Taken together, point measurement has limitations in terms of spatial representation and spatial extent, especially in a watershed scale data analysis; therefore, utilizing the freely available SMAP soil moisture data and its downscaled version with the S-1 SAR data could be considered as an efficient and low cost tool to be used in research and implementation for the local and regional applications.

کلیدواژه‌ها [English]

  • Firoozabad Watershed
  • soil moisture
  • active-passive downscaling
  • Sentinel-1
  • SMAP
Akbar R, Das N, Entekhabi D, Moghaddam M. 2016. Active and passive microwave remote sensing synergy for soil moisture estimation, satellite soil moisture retrieval. Elsevier Inc. pp. 187–207
Akbar R, Moghaddam M. 2015. A combined active–passive soil moisture estimation algorithm with adaptive regularization in support of SMAP. IEEE Transactions on Geoscience and Remote Sensing. 53(6): 3312–24.
Akbari Majdar H. 2018. Downscaling the surface soil moisture data extracted from the SMAP images, using the simulated soil moisture pattern. Ph.D. Dissertation. Faculty of Natural Resources. Tarbiat Modares University. 124 p. (In Persian).
Akbari Majdar H, Vafakhah M, Sharifikia M, Ghorbani A. 2018. Spatial and temporal variability of soil moisture in relation with topographic and meteorological factors in south of Ardabil Province, Iran. Environmental monitoring and assessment. 190(9): 500–510
Albergel C, De Rosnay P, Gruhier C, Muñoz-Sabater J, Hasenauer S, Isaksen L, Kerr Y, Wagner W. 2012. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sensing of Environment. 118(1): 215–226.
Alvarez-Garreton C, Ryu D, Western AW, Crow WT, Robertson DE. 2014. The impacts of assimilating satellite soil moisture into a rainfall–runoff model in a semi-arid catchment. Journal of  Hydrology. 519(1): 2763–2774
Barrett B, Petropoulos G. 2013. Satellite Remote Sensing of Surface Soil Moisture, in: Petropoulos GP. Remote sensing of energy fluxes and soil moisture content. CRC Press. pp. 85–120
Brocca L, Tullo T, Melone F, Moramarco T, Morbidelli R. 2012. Catchment scale soil moisture spatial–temporal variability. Journal of  Hydrology. 422(1): 63–75
Colliander A, Jackson TJ, Bindlish R, Chan S, Das N, Kim SB, Cosh MH, Dunbar RS, Dang L, Pashaian L,  Asanuma J. 2017. Validation of SMAP surface soil moisture products with core validation sites. Remote Sensing of Environment. 191(1): 215–231.
Das NN, Entekhabi D, Njoku EG. 2011. An algorithm for merging SMAP radiometer and radar data for high-resolution soil-moisture retrieval. IEEE Trans. Geosci. Remote Sens. 49(5): 1504-1512
Das NN, Entekhabi D, Njoku EG, Shi JJC, Johnson JT, Colliander A. 2014. Tests of the SMAP combined radar and radiometer algorithm using airborne field campaign observations and simulated data. IEEE Transactions on Geoscience and Remote Sensing.  52(4): 2018–2028.
Entekhabi D, Njoku EG, O’Neill PE, Kellogg KH, Crow WT, Edelstein WN, et al. 2010. The soil moisture active passive (SMAP) mission. Proceedings of the IEEE. 98(5): 704–716.
ESA. 2015. European Space Agency website. URL www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/ Sentinel-1
Jiang H, Shen H, Li H, Lei F, Gan W, Zhang L, 2017. Evaluation of multiple downscaled microwave soil moisture products over the Central Tibetan Plateau. Remote Sensing. 9(5):402–410.
Hongxiang Y, Moradkhani H. 2016. Combined assimilation of streamflow and satellite soil moisture with the particle filter and geostatistical modeling. Advance Water Resources. 94(2): 364–378
Khaledi Darvishan A, Sadeghi SH, Homaee M, Arabkhedri M. 2014. Measuring sheet erosion using synthetic color-contrast aggregates. Hydrologyogical Processes. 28(3): 4463–4471.
Kornelsen, KC, Coulibaly P, 2013. Advances in soil moisture retrieval from synthetic aperture radar and hydrologyogical applications. Journal of  Hydrology. 476(4): 460–489.
Montzka C, Jagdhuber T, Horn R, Bogena HR, Hajnsek I, Reigber A, Vereecken H, 2016. Investigation of SMAP fusion algorithms with airborne active and passive l-band microwave remote sensing. IEEE Trans. Geosci. Remote Sens. 54(4): 3878–3889.
Paloscia S, Pettinato S, Santi E, Notarnicola C, Pasolli L, Reppucci A. 2013. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sensing of Environment. 134(1): 234–248.
Rüdiger C, Member S, Su C, Ryu D, Wagner W, Member S, Rüdiger C, Ieee SM, Su C, Ryu D, Wagner W, Ieee SM. 2016. Disaggregation of low-resolution l-band radiometry using c-band radar data. IEEE Geosci. Remote Sens. Lett. 1–5.
Santi E, Paloscia S, Pettinato S, Brocca L, Ciabatta L, Entekhabi D. 2018. On the synergy of SMAP, AMSR2 and SENTINEL-1 for retrieving soil moisture. International Journal of Applied Earth Observation and Geoinformation. 65(2): 114–123.
Sepahvand A, Taie Semiromi M, Mirnia Kh,  Moradi H R. 2011. Assessing the sensitivity of infiltration models to variability of soil moisture. Journal of Water and Soil. 25(2): 338–346. (In Persian).
Srivastava PK, Han D, Ramirez M A, Islam T. 2013. Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrologyogical application. Water resour. manag. 27(8): 3127-3144.
Trzaska S, Schnarr E. 2014. A review of downscaling methods for climate change projections. United States Agency for International Development by Tetra Tech ARD. pp.1–42
van der Velde R, Salama MS, Eweys OA, Wen J, Wang Q. 2014. Active / Passive microwave observations over the east of the netherlands. IEEE J. Sel. Top. Appl. eath Obs. Remote. 8(3): 1–18.
Wu X, Walker JP, Das NN, Panciera R, Rüdiger C. 2014. Evaluation of the SMAP brightness temperature downscaling algorithm using active–passive microwave observations. Remote Sensing of Environment. 155(1): 210–221.
Wu X, Walker JP, Rudiger C, Panciera R. 2015. Effect of land-cover type on the SMAP active/passive soil moisture downscaling algorithm performance. IEEE Geosci. Remote Sens. Lett. 12(2): 846–850.
Zhao W, Sánchez N, Lu H, Li A. 2018. A spatial downscaling approach for the SMAP passive surface soil moisture product using random forest regression. Journal of hydrology. 563(1):1009–1024.
Zhao L, Yang K, Qin J, Chen Y, Tang W, Lu H, Yang ZL. 2014. The scale-dependence of SMOS soil moisture accuracy and its improvement through land data assimilation in the central Tibetan Plateau. Remote Sensing of Environment. 152(2): 345–355.