شبیه‌سازی آب‌نگار سیلاب با رابطه‌ی ساده‌شده‌ی انتقال-پخش در آبخیز کشکان، استان لرستان

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکترای مهندسی آبخیزداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد

2 استادیار، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد

3 استاد، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان

4 استادیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهرکرد

چکیده

بررسی سیلاب یکی از رایج‌ترین پدیده‌های مخرب طبیعی است و اهمیت زیادی دارد. به‌دلیل مشکل کمبود و نقص آمار آب در بیش‌تر ایستگاه‌های آب‌سنجی رود‌های کشور، شبیه‌سازی آب‌نگار سیلاب با نرم‌افزار‌های آب‌شناسی مهم است. نرم‌افزار‌های پرشمار آب‌شناسی برای شبیه‌سازی آب‌نگار سیلاب هست. این پژوهش کارآیی رابطه‌ی انتقال-پخش را در شبیه‌سازی 36 پدیده‌ی سیلاب در 5 بازه‌ی رود کشکان و سرشاخه‌های آن بررسی کرده است. ویژگی‌های فیزیکی بازه‌های بررسی‌شده و داده‌های آب‌سنجی هر پدیده‌ی سیلاب شامل آب‌دهی و مقیاس تراز ‌آب ایستگاه ورودی و خروجی برای تعیین ضریب زبری مانینگ و شبیه‌سازی سیلاب با رابطه‌ی انتقال-پخش به‌کار گرفته شد. ارزیابی آب‌نگار‌های سیلابی نشان‌دهنده‌ی دقت پذیرفتنی نرم‌افزار در شبیه‌سازی روند سیلاب و مقدار آب‌دهی‌های سیلابی است. با هدف بررسی درستی نتیجه‌ی اجرای نرم‌افزار، ضریب‌های نش-ساتکلیف، RMSE، ضریب حجم‌سنجی، ضریب کالینگ‌گوپتا، و ضریب همبستگی R بررسی شد. مقدار بیش‌تر از 0/5 برای ضریب ناش ساتکلیف در 29 سیلاب از 36 سیلاب بررسی‌شده و مقدار پذیرفتنی ضریب‌های دیگر برای همه‌ی پدیده‌های سیلابی بررسی‌شده، تأییدکننده‌ی نتیجه‌ی شبیه‌سازی آب‌نگار سیلاب در آبخیز کشکان در مقیاس بازه‌یی با رابطه‌ی ساده‌شده‌ی انتقال-پخش برای این آبخیز است. رابطه‌ی ساده‌شده‌ی انتقال-پخش ممکن است برای شبیه‌سازی سیلاب در مقیاس بازه‌یی در آبخیزهای مشابه به‌کارگرفته شود.

کلیدواژه‌ها


عنوان مقاله [English]

Flood Hydrograph Simulation Using Simplified Advection-Diffusion Equations in Kashkan Watershed, Lorestan Province

نویسندگان [English]

  • Mania Daneshfar 1
  • Khodayar Abdollahi 2
  • Amir Hamzeh Haghiabi 3
  • Nasrin Gharahi 2
  • Mehdi Pajoohesh 2
  • Ali Raiesi 4
1 PhD student of watershed management, Faculty of Earth Science, Shahrekord University
2 Assistant professor, Faculty of Earth Science, Shahrekord University
3 Professor, Department of Water Engineering, Lorestan University
4 Assistant professor, Department of Water Engineering, Faculty of Agricultare, Shahrekord University
چکیده [English]

Investigation of floods as one of the most common natural destructive phenomena is very important. Due to the problem of deficiency and defect of hydraulic data in most hydrometric stations in the country, flood hydrograph simulation by hydrological and hydraulic models is helpful. There are several hydrological and hydraulic models to simulate flood hydrographs. The present study has investigated the performance of Advection-Diffusion relationships of 36 flood phenomena in 5 study reaches of Kashkan river and its tributary. Physical properties related to the studied periods and hydrometery data related to each flood phenomenon, including discharge and scale of the input and output station, were used to determine the Manning roughness coefficient and flood simulation. Evaluation of obtained hydrographs indicates the acceptable accuracy of the model in term of simulating values of flood trends and discharge. In order to evaluate the accuracy of the model results, different coefficients such as: Nash-Sutcliffe, RMSE, Volumetric Efficiency, Kling-Gupta and R correlation coefficient were calculated. A value above 0.5 for the Nash-Sutcliffe coefficient in 29 flood phenomena out of 36 studied phenomena, and an acceptable range of other coefficients for all studied flood phenomena, indicates the verifiable results of flood hydrograph simulation using simplified propagation methods at reach scale for studied watershed. Therefore, Advection-Diffusion relationships can be used in similar watersheds to the study area to simulate floods.

کلیدواژه‌ها [English]

  • Diffusion equations
  • interval scale
  • Maning roughness cofficient
  • Nash-sutcliffe cofficient
  • surface flow
Andrews ED. 1980. Effective and bankfull discharges of streams in the Yampa River Basin, Colorado and Wyoming. Journal of Hydrology. 46(3-4):311–330.
Ardıçlıoğlu M, Kuriqi A. 2019. Calibration of channel roughness in intermittent rivers using HEC-RAS model: Case of Sarimsakli creek, Turkey. SN Applied Sciences. 1(9):1–9.
Bellos V, Tsakiris G. 2016. A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques. Journal of Hydrology. 540:331–339.
Biggin D.1996. A comparison of ERS‐1 satellite radar and aerial photography for river flood mapping. Water and Environment Journal. 10(1):59–64.
Cooparation with the Department of Transportation, Federal Highway Adminstration. 1989. Published guide for selecting Manning's roughness coefficients for natural channels and flood plains. Avalibel at https://pubs.usgs.gov/wsp/2339/. United States Geological Survey Water-Supply Paper 2339, US Government Printing Office Washington, DC. USA.
Chen Y. 2010. Numerical modelling of solute transport processes using higher order accurate finite difference schemes. Numerical treatment of flooding and drying in tidal flow simulations and higher order accurate finite difference modelling of the advection diffusion equation for solute transport predictions. Ph.D. Dissertation. Department of Civil Engineering. University of Bradford. 328 p.
Cholet C, Charlier JB, Moussa R, Steinmann M, Denimal S. 2017. Assessing lateral flows and solute transport during floods in a conduit-flow-dominated karst system using the inverse problem for the advection–diffusion equation. Hydrology and Earth System Sciences. 21(7):3635–3653.
Courty LG. Pedrozo-Acuña A. Bates PD. 2017. Itzï (version 17.1): an open-source, distributed GIS model for dynamic flood simulation. Geoscientific Model Development. 10(4):1835–1847.
De Saint-Venant B. 1871. Theory of unsteady water flow, with application to river floods and to propagation of tides in river channels. French Academy of Science. 73(1):148–154.
Dong W, Wang Q, Zhou B, Shan Y. 2013. A simple model for the transport of soil-dissolved chemicals in runoff by raindrops. Catena. 101(1):129–35.
Foroozand H, Afzali SH. 2015. A comparative study of honey-bee mating optimization algorithm and support vector regression system approach for river discharge prediction case study: Kashkan River Basin. Proceedings of the International Conference on Civil Engineering Architecture and Urban Infrastructure, 29–30 july, Tabriz, Iran. 14 p.
Gillham R, Sudicky E, Cherry J, Frind E. 1984. An advection‐diffusion concept for solute transport in heterogeneous unconsolidated geological deposits. Water Resources Research. 20(3): 369–378.
Harsha S, Agarwal S, Kiran C. 2020. Regional flood forecasting using SWMM for Urban Catchment. 9(3): 1027–1031.
Hasan MM, Rahman SM, Mahamud U. 2015. Numerical modeling for the propagation of tsunami wave and corresponding inundation. IOSR Journal of Mechanical and Civil Engineering (IOSR J Mech Civil Eng). 12(2):55–62.
Kia MB, Pirasteh S, Pradhan B, Mahmud AR, Sulaiman WNA, Moradi A. 2012. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences. 67(1):251–264.
Kirchner JW, Feng X, Neal C. 2001. Catchment-scale advection and dispersion as a mechanism for fractal scaling in stream tracer concentrations. Journal of Hydrology. 254(1–4):82–101.
Kumar A, Jaiswal DK, Kumar N. 2010. Analytical solutions to one-dimensional advection–diffusion equation with variable coefficients in semi-infinite media. Journal of Hydrology. 380(3–-4):330–337.
Knoben WJ, Freer JE, Woods RA. 2019. Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences. 23(10):4323–31.
Leandro J, Chen AS, Djordjević S, Savić DA. 2009. Comparison of 1D/1D and 1D/2D coupled (sewer/surface) hydraulic models for urban flood simulation. Journal of Hydraulic Engineering. 135(6):495–504.
Liang Q. 2010. Flood simulation using a well-balanced shallow flow model. Journal of Hydraulic Engineering. 136(9):669–675.
Singh VP.1995. Computer models of watershed hydrology. Water Resources Pubns; Reprinted Edition (March 1, 2012). pp. 80–120.
Turhan E, Ozmen-Cagatay H, Tantekin A. 2019. Modeling flood shock wave propagation with the smoothed particle hydrodynamics (SPH) method: An experimental comparison study. Applied Ecology and Environmental Research. 17(2):3033–3047.
Mays LW. 2010. Water resources engineering. In: John Wiley & Sons. Chapter 12‏, water distribution. pp. 463–547.
Walter MT, Gao B, Parlange JY. 2007. Modeling soil solute release into runoff with infiltration. Journal of Hydrology. 347(3–4):430–7.
Yang Y. Endreny TA. 2013. Watershed hydrograph model based on surface flow diffusion. Water Resources Research. 49(1):50–516.
Yang Y, Endreny TA, Nowak DJ. 2015. Simulating the effect of flow path roughness to examine how green infrastructure restores urban runoff timing and magnitude. Urban Forestry & Urban Greening. 14(2):361–7.
Yang Y, Endreny TA, Nowak DJ. 2016. Application of advection-diffusion routing model to flood wave propagation: A case study on Big Piney River, Missouri USA. Journal of Earth Science. 27(1):9–14.
Yen B, Tsai C-S. 2001. On noninertia wave versus diffusion wave in flood routing. Journal of Hydrology. 244(1–2):97–104.
Younis J, Anquetin S, Thielen J. 2008. The benefit of high-resolution operational weather forecasts for flash flood warning. Hydrology and Earth System Sciences. 12(4): 1039–1051.