ارزیابی کیفیت بوم‌شناختی آبخیز نیر، استان اردبیل

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار، گروه مرتع و آبخیزداری، دانشکده ی کشاورزی و منابع طبیعی، پژوهشکده‌ی مدیریت آب، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانشجوی دکتری، گروه مهندسی آبخیزداری، دانشکده‌ی منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

3 دانش‌آموخته ی کارشناسی ارشد، گروه مرتع و آبخیزداری، دانشکده ی کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

4 دانشجوی دکتری، گروه مرتع و آبخیزداری، دانشکده ی منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

5 دانش‌آموخته ی دکتری، کارشناس، گروه علوم و مهندسی خاک، دانشکده ی کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

6 دانشیار، گروه مهندسی عمران و معماری، دانشگاه سلطان قابوس، مسقط، عمان

چکیده

مقدمه و هدف
کیفیت بوم‌شناختی یک واحد اندازه‌گیری جامع از عناصر، ساختار و عملکرد یک بوم‌سازگان در مقیاس‌های زمان و مکان است. هم‌چنین، ارزیابی کیفیت بوم‌شناختی می‌تواند در اولین گام برنامه‌ریزی هدف‌مند و مدیریت جامع آبخیز اطلاعات ارزشمندی برای استفاده‌ی کارشناسان و مدیران داشته باشد. به این ‌منظور، این پژوهش با هدف محاسبه‌ی شاخص کیفیت بوم‌شناختی (EQI) در یکی از آبخیزهای بالادست سد یامچی که بی‌تأثیر از دخالت‌های انسانی نیست، انجام شد.
مواد و روش‌ها
آبخیز نیر به‌عنوان منطقه‌ی مطالعاتی در بخش جنوب‌غرب استان اردبیل است. برای انجام پژوهش، ابتدا، متغیرهای مهم ارزیابی کیفیت بوم‌شناختی (شاخص بهنجار‌شده اختلاف پوشش گیاهی (NDVI)، نسبت پوشش گیاهی (FVC)، شاخص سطح برگ (LAI)، تولید خالص اولیه (NPP)، شاخص رطوبت (IM)، شاخص دمای سطح زمین (LST)، فرسایش خاک، شاخص‌ پیوستگی بوم‌شناختی و شاخص‌ نگهداشت رواناب) استخراج و محاسبه شدند. متغیرها به‌نحوی انتخاب شدند که نشان‌دهنده‌ی سه عملکرد حفظ، پشتیبانی و تنظیم بوم‌سازگان باشند. پس از نرمال‌سازی، با استفاده از رویکرد پیشرفته‌ی تصمیم‌گیری چندمعیاره به‌نام مدل تصور تعقیبی (PPM)، وزن‌دهی متغیرها انجام شد. در نهایت براساس مجموع وزنی متغیرها، شاخص کیفیت بوم‌شناختی (EQI) برای 11 زیرآبخیز محاسبه شد.
نتایج و بحث
دامنه‌ی تغییرپذیری بسیار زیاد متغیرهای استفاده شده در سطح کل آبخیز نیر تأیید شد. به‌طور کلی، زیرآبخیز 1 حداکثر میانگین متغیرهای اول تا چهارم (FVC، NDVI، NPP و LAI) و حداقل میانگین LST داشت. در حالی‌که زیرآبخیز 11 از نظر همین پنج متغیر وضعیت عکس داشت. هر پنج متغیر منعکس‌کننده‌ی ساختار و عملکرد پوشش گیاهی و در نتیجه کیفیت بوم‌شناختی هستند. وضعیت سایر شاخص‌ها به‌جز پیوستگی بوم‌شناختی (EC) نیز در زیرآبخیز 1 در وضعیت متوسط ارزیابی شدند. براساس روش وزن‌دهی PPM، شاخص نسبت پوشش گیاهی (0/39) بیشترین اهمیت و شاخص‌های‌ رطوبت و نگهداشت رواناب با وزن 0/01 کم‌ترین اهمیت را داشتند. هم‌چنین، نتایج ارزیابی کیفیت بوم‌شناختی نشان داد که زیرآبخیزهای 11 (0/10=EQI) و 1 (0/90=EQI) به‌ترتیب کم‌ترین و بیش‌ترین اندازه‌ی EQI را داشتند. به‌طور کلی، با توجه به نتایج پهنه‌بندی مشخص شد که قسمت‌های جنوب‌شرق و شمال‌شرق آبخیز در طبقه‌ی بسیار کم شاخص کیفیت بوم‌شناختی (EQI) هستند که 29 % آبخیز مطالعه شده را تشکیل می‌دهند.
نتیجه‌گیری و پیشنهادها
نتایج این پژوهش به‌عنوان یکی از هدف‌های اصلی و مهم مدیریت آبخیز در راستای حفظ سلامت و یکپارچگی بوم‌سازگان می‌تواند کاربرد داشته باشد. هم‌چنین، می‌توان اولویت‌بندی تخصیص بودجه‌ی احیاء را براساس درجه‌ی تاب‌آوری زیرآبخیز‌های مطالعه شده انجام داد.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of Ecological Quality in the Nir Watershed, Ardabil Province

نویسندگان [English]

  • Zeinab Hazbavi 1
  • Elnaz Ghabelnezam 2
  • Elham Azizi 3
  • Zahra Sharifi 4
  • Solmaz Fathololoumi 5
  • Mohammad Reza Nikoo 6
1 Associate Professor, Department of Range and Watershed Management, Faculty of Agriculture and Natural Resources, Water Management Research Center, University of Mohaghegh Ardabili, Ardabil, Iran
2 Ph.D. Student, Department of Watershed Management Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
3 Former M.Sc. Student, Department of Natural Resources Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
4 Ph.D. Student, Department of Range and Watershed Management, Faculty of Natural Resources, Urmia University, Urmia, Iran
5 Former Ph.D. Student, Expert, Department of Soil Science and Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
6 Associate Professor, Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman
چکیده [English]

Introduction and Objective
Ecological quality is an inclusive measurement unit of the elements, configuration, and performance of an ecosystem in the temporal and spatial scales. In addition, assessing ecological quality could provide valuable information for experts and managers in the first step of directed planning and comprehensive watershed management. Therefore, the current research was conducted to calculate the ecological quality index (EQI) in one of the upland watersheds of Yamchi Dam, which is not without the effect of human interference.
Materials and Methods
Nir Watershed as a study area is located in the southwestern part of Ardabil Province. To carry out the current research, first, the essential variables of ecological quality assessment (normalized difference vegetation index (NDVI), fractional vegetation coverage (FVC), leaf area index (LAI), net primary production (NPP), moisture index (IM), land surface temperature (LST), soil erosion, ecological integrity index, and runoff retention index) were collected and calculated. The variables were chosen to represent the three functions of ecosystems maintaining, supporting, and regulating. After standardization, weighting of the variables was done using the advanced multi-criteria, i.e., Projection Pursuit Model (PPM). Afterward, the EQI was calculated based on the sum weight of all variables for 11 sub-watersheds of Nir.
Results and Discussion
The wide range of variability of the variables used in the entire Nir Watershed area was confirmed. In general, sub-watershed 1 had the maximum mean of the first to fourth variables (FVC, NDVI, NPP, and LAI) and the minimum mean LST. While sub-watershed 11 had the opposite situation in terms of these five variables. All five variables reflect the structure and function of vegetation and therefore the ecological quality. The status of other indicators except ecological continuity (EC) was also evaluated in sub-watershed 1 in a medium status. Based on the PPM weighting method, the FVC (0.39) has the highest importance, and moisture and runoff retention indices with an equal weight of 0.01 have been assigned the least priority. In addition, the ecological quality results showed that watersheds 11 (0.10) and 1 (0.90) respectively have the lowest and highest levels of EQI. In general, according to the zoning resultd, it was found that the northeastern and southeastern parts of the watershed have the lowest EQI which covered 29% of the area.
Conclusion and Suggestions
The results can be used as one of the main goals of managing watersheds regarding preserving the ecosystem's health and integrity. Moreover, the priority of rehabilitation budget allocation can be assigned according to the resilience degrees of studied sub-watersheds.

کلیدواژه‌ها [English]

  • Ecosystem resilience
  • index-based assessment
  • resource management
  • projection pursuit model
Alaei N, Mostafazadeh R, Esmali Ouri A, Sharari M, Hazbavi Z. 2020. Assessment and Comparison of Landscape connectivity in KoozehTopraghi Watershed, Ardabil Province. Iranian Journal of Applied Ecology. 8(4): 19-34. (In Persian). http://dx.doi.org/10.47176/ijae.8.4.2572
Adl HR. 2007. Estimation of Leaf Biomass and Leaf Area Index of Two Major Species in Yasuj Forests. Iranian Journal of Forest and Poplar Research. 15(4): 426-417. (In Persian).
An M, Xie P, He W, Wang B, Huang J, Khanal R. 2022. Spatiotemporal Change of Ecologic Environment Quality and Human Interaction Factors in Three Gorges Ecologic Economic Corridor, based on RSEI. Ecological Indicators. 141: 1-13. https://doi.org/10.1016/j.ecolind.2022.109090
Andalibi L, Ghorbani A, Moameri M, Hazbavi Z, Nothdurft A, Jafari R, Dadjou F. 2021. Leaf Area Index Variations in Ecoregions of Ardabil Province, Iran. Remote Sensing. 13(15): 2879. https://doi.org/10.3390/rs13152879
Asghari Saraskanroud S, Aghayary L, Pirouzi E. 2018. Study of Land Use Change and its Effect on Erosion in Nir City using GIS and RS (Case Study: Nir County). Journal of RS and GIS for Natural Resources. 8(4): 49-62. (In Persian).
Burkhard B, Muller F. 2008. Indicating Ecosystem Health and Integrity. In: Denhardt, A., Petschow, U. (Eds), Sustainability in River Basins-A Question of Governance. O¨ kom-Verlag, Munchen. 35–57.
Chai LH, Lha D. 2018. A New Approach of Deriving Indicators and Comprehensive Measure for Ecological Environmental Quality Assessment. Ecological Indicators. 85: 716–728. https://doi.org/10.1016/j.ecolind.2017.11.039
Cheng-lin M, Li-yan S, Li Y. 2016. The Studies of Ecological Environmental Quality Assessment in Anhui Province based on Ecological Footprint. Ecological Indicators. 60: 879-883. https://doi.org/10.1016/j.ecolind.2015.08.040
Cong W, Li X, Pan X, Liu X, Lu Q, Wang F. 2022. A New Scientific Framework of Dryland Ecological Quality Assessment based on 1OAO Principle. Ecological Indicators. 136 (7): 108595. https://doi.org/10.1016/j.ecolind.2022.108595
Choobeh S, Kake Mami A. 2015. Investigating Changes in Temperature and Precipitation using the Statistical Exponential Subscale of the HADCM3 Model Output in the Baliqlo Chai Watershed in the 2080-2099 Decade. The Second National Conference on Conservation of Natural Resources and Environment. March 12 and 13. University of Mohaghegh Ardabili. 1-7. (In Persian).
Costanza R. 2012. Ecosystem Health and Ecological Engineering. Ecological Engineering. 45: 24-29. https://doi.org/10.1016/j.ecoleng.2012.03.023
Dadjou F, Ghorbani A, Moameri M, Mostafazadeh R, Hazbavi Z. 2021. Modeling Production and Canopy Cover Parameters to Identify the most Effective Environmental Factors in Baghrou Semi-Steppe Rangelands of Ardabil Province, Iran. Iranian Journal of Applied Ecology. 10(3): 1-15. (In Persian) http://dx.doi.org/10.47176/ijae.10.3.5032
Dashtekian K, Dehghani MA. 2008. Land Surface Temperature Analysis of Desert Area in Relation with Vegetation and Urban Development using RS and GIS, Case Study: Yazd-Ashkezar Area. Pajouhesh and Sazandegei. 77(3): 169-179. (In Persian)
Deng CX, Xie BG, Li XQ, Liu LK, Xiang YB. 2013. Evaluation of Cultivated Land Intensive Utilization in Chang-Zhu-Tan Urban Agglomeration based on Projection Pursuit. Geographical Research. 32(11): 2000-2008. https://doi.org/10.11821/dlyj201311003
Esmali-Ouri A, Abdullahi Kh. 2011. Watershed Management and Soil Conservation. University of Mohaghegh Ardabili Press. 612 pp. (In Persian)
Esmali-Ouri A, Ahmadi H, Tahmoures M. 2014. Quantity Assessment of Water Erosion Intensity using Regional Model of Erosion and Sediment Yield (Case Study: Nir Watershed, Ardebil). Journal of Range and Watershed Management. 67(3): 407-417. (In Persian) https://doi.org/10.22059/jrwm.2014.52830
Fang C, Wei L, Huang W, Xiao F. 2010. A Water Quality Evaluation Method of Projection Pursuit Regression based on Ant Colony Algorithm in Nanning Urban River. 4th International Conference on Bioinformatics and Biomedical Engineering. IEEE. pp. 1–6. https://doi.org/10.1109/ICBBE.2010.5516961
Farrokhzadeh B, Choobeh S, Nouri H, Goodarzi M. 2018. Study of Climate Change and Land Use Changes Impacts on Surface Runoff: Balighlo Chai Watershed in Ardebil. Watershed Engineering and Management. 10(3): 318-331. (In Persian). https://doi.org/10.22092/ijwmse.2017.107110.1165
Fathololoumi S, Vaezi A, Alavipanah SK, Ghorbani A. 2020. Modeling Soil Organic Carbon Variations using Remote Sensing Indices in Ardabil Balikhli Chay Watershed. Iranian Journal of Soil and Water Research. 51(9):2417-2429. (In Persian). https://doi.org/10.22059/ijswr.2020.299509.668542
Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik J, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK. 2005. Global Consequences of Landuse. Science. 309(5734): 570–574. https://doi.org/10.1126/science.1111772.
Freyfogle ET, Lutz Newton J. 2002. Putting Science in its Place. Conservation Biology. 16(4): 863–873. https://doi.org/10.1046/j.1523-1739.2002.01042.x
Friedman JH, Tukey JW. 1974. A Projection Pursuit Algorithm for Exploratory Data Analysis. IEEE Transactions on Computers. C-23(9): 881–890. https://doi.org/10.1109/T-C.1974.224051
Garland G, Banerjee S, Edlinger A, Miranda Oliveira E, Herzog C, Wittwer R, Philippot L, Maestre FT, Heijden MGA, Hector A. 2021. A Closer Look at the Functions Behind Ecosystem Multifunctionality: A Review. Journal of Ecology. 109(2): 600–613. https://doi.org/10.1111/1365-2745.13511
Hang X, Luo XC, Cao Y, Li YC. 2020. Ecological Quality Assessment and the Impact of Urbanization based on RSEI Model for Nanjing, Jiangsu Province, China. Applied Ecology. 31(1): 219-229. https://doi.org/10.13287/j.1001-9332.202001.030
Hashemi SM, Yavari AR, Jafari HR. 2015. Spatio-Temporal Analysis of Environmental Quality of Ecotonal Zones in Iranian Central Plateau using Landscape Ecological Metrics. Environmental Studies. 41(1): 201-218. (In Persian). https://doi.org/10.22059/jes.2015.53910
Hong WY, Jiang RR, Yang CG, Zhang FF, Su M, Liao Q. 2016. Establishing an Ecological Vulnerability Assessment Indicator System for Spatial Recognition and Management of Ecologically Vulnerable Areas in Highly Urbanized Regions: A Case Study of Shenzhen, China. Ecolgical Indicators. 69: 540–547. https://doi.org/10.1016/j.ecolind.2016.05.028
Imhoff ML, Bounoua LL, Ricketts T, Loucks C, Harriss R, Lawrence WT. 2004. Global Patterns in Human Consumption of Net Primary Production. Nature. 24(429): 3-870. https://doi.org/10.1038/nature02619
Jafari M. 2014. Change and Vulnerability of Net Primary Production (NPP) in Iranian Forest, Rangeland and Desert Dcosystems Impacted by Climate Change. Rangeland and Desert Research, 21(1): 139-153. (In Persian) https://doi.org/10.22092/ijrdr.2014.8086
Jafari Sayadi F, Gholami Sefidkouhi MA, Ziaeetabar Ahmadi MKh. 2018. Leaf Area Index and Crop Coefficient Estimation from Operational Land Imager (OLI) Sensor Data. Water Research in Agriculture. 32(3): 395-404. (In Persian). https://doi.org/10.22092/jwra.2018.117797
Janssen R, Arciniegas GA, Verhoeven JTA. 2013. Spatial Evaluation of Ecological Qualities to Support Interactive Land-Use Planning. Environment and Planning B: Planning and Design. 40(3): 427–446. https://doi.org/10.1068/b37064
Jiang Q, Fu Q, Wang Z. 2011. Comprehensive Evaluation of Regional Land Resource Carrying Capacity based on Particle Swarm Optimization Projection Pursuit Model. Transactions of the Chinese Society of Agricultural Engineering. 27(11): 319–324. https://doi.org/10.3969/j.issn.1002-6819.2011.11.060
Jones ME, Sibson R. 1987. What is Projection Pursuit, Royal Statistical Society. Series A (General). 150(1):1-36.
Jonkheere I, Fleck S, Nackaerts K, Coppin P. 2004. Review of Methods for in Situ Leaf Area Index Determination: Part I, Theories, Sensors and Hemispherical Photography. Agricultural and Forest Meteorology. 121(1-2): 19-35. https://doi.org/10.1016/j.agrformet.2003.08.027
Kang N, Sakamoto T, Imanishi J, Fukamachi K, Shibata S, Morimoto Y. 2013. Characterizing the Historical Changes in Land Use and Landscape Spatial Pattern on the Oguraike Floodplain after the Meiji Period. Intercultural Understanding. 1(3): 11-16. https://doi.org/10.14993/00000843
Karr JR. 1999. Defining and Measuring River Health. Freshwater Biology. 41(2): 221–234. https://doi.org/10.1046/j.1365-2427.1999.00427.x
Hasibi A, Fallah Farbod S, Laghai H. 2011. Theory and Techniques for Revitalization of Urban Park in Old Context of City with Emphasis on Conservation of Cultural and Historical Heritage (Case study: The First Tehran’s public park). Journal of Environmental Science and Technology. 16(3): 137-154. (In Persian).
Li MM, Wu BF, Yan CZ, Zhou WF. 2004. Estimation of Vegetation Fraction in the Upper Basin of Miyun Reservoir by Remote Sensing. Resource Science. 26(4): 153–159.
Liu D, Zhang G, Li H, Fu Q, Li MO, Faiz MA, Ali S, Li T, Imran Khan M. 2019. Projection Pursuit Evaluation Model of a Regional Surface Water Environment based on an Ameliorative Moth-Flame Optimization Algorithm. Ecolgical Indicators. 107: 1-13. https://doi.org/10.1016/j.ecolind.2019.105674
Logsdon RA, Chaubey I. 2013. A Quantitative Approach to Evaluating Ecosystem Services. Ecological Modelling. 257: 57-65. https://doi.org/10.1016/j.ecolmodel.2013.02.009
Mahdavi M. 2009. Applied Hydrology. Second Volume. University of Tehran. 437 p.
McGarigal K, Cushman SA, Neel EN. 2002. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer Software Program Produced by the Authors at the University of Massachusetts. pp. 691-703.
Mostafazadeh R, Jafari A, Keivan-Behjou F. 2018. Comparing the Rangeland Structure and Degradation of Landscape Connectivity in Iril Sub-Watersheds, Ardabil Province. Iranian Journal of Applied Ecology. 7(1): 41-53. (In Persian). http://dx.doi.org/10.29252/ijae.7.1.41
Mu D, Luo P, Lyu J, Zhou M, Huo A, Duan W, Nover D, He B, Zhao X. 2021. Impact of Temporal Rainfall Patterns on Flash Floods in Hue City, Vietnam. Flood Risk Management. 14(1): e12668. https://doi.org/10.1111/jfr3.12668.
Oehri J, Schmid B, Schaepman-Strub G, Niklaus PA. 2017. Biodiversity Promotes Primary Productivity and Growing Season Lengthening at the Landscape Scale. Proceedings of the National Academy of Sciences. 114(38): 10160–10165. https://doi.org/10.1073/pnas.1703928114
Ostadi M, Soltanifard H, Adab H, Gholeychipour Z, Pahlovani A. 2017. Assessment and Ranking of Mashhad Urban District to Refer Ecological Quality of Urban Green Spaces using Topsis Method. Environmental Studies. 43(2): 329-347. (In Persian). https://doi.org/10.22059/jes.2017.63082
Ouyang X, Wang J, Chen X, Zhao X, Ye H, Watson AE, Wang SH. 2021. Applying a Projection Pursuit Model for Evaluation of Ecological Quality in Jiangxi Province, China. Ecological Indicators. 133: 108414. https://doi.org/10.1016/j.ecolind.2021.108414.
Paetzold A, Warren PH, Maltby LL. 2010. A Framework for Assessing Ecological Quality based on Ecosystem Services. Ecological Complexity. 7(3): 273-281. https://doi.org/10.1016/j.ecocom.2009.11.003.
Qu Y, Zhuang Q. 2018. Modeling Leaf Area Index in North America using a Process-based Terrestrial Ecosystem Model. Ecosphere. 9(1): 1-17. https://doi.org/10.1002/ecs2.2046
Reicosky DC, Forcella F. 1998. Cover Crop and Soil Quality Interactions in Agroecosystems. Journal of Soil and Water Conservation. 53(3): 224–229.
Sadoddin A, Shahabi M, Bai M. 2016. Evaluation and Comprehensive Management of Watersheds, Principles and Approaches of Modeling and Decision Making. Publications of Gorgan University of Agricultural Sciences and Natural Resources. 170 p. (In Persian).
Sepahvand R. 2021. Assessment of the Ecological Quality of Urban Streets from the Perspective of Citizens in Khorramabad. The 12th National Conference on Urban Planning, Architecture, Civil Engineering and Environment. Research Institute of Paya Shahr Etrak, 1-14. (In Persian).
Souri M, Alibeygy T, Erfanian M, Motamedi J, Khalifezadeh R. 2021. Evaluation of GPP based on NDVI Index with MODIS Spatial Resolution Sensor in Estimating Rangeland Production (Resin Basin of Kermanshah Province). Rangeland and Desert Research. 28(1): 21-33. (In Persian). https://doi.org/10.22092/ijrdr.2021.123850
Su QJ, An YL, Ma SB, Zhao Y, An JK, An HF. 2017. Differences of Landscape Ecological Quality Under Different Lithologic Zones in Karst Mountainous Areas: A Case Study of Luodian County. Carsologica Sinica. in Chinese with English Abstract. 36(4): 454–462.
Tadesse G, Zavaleta E, Shennan C, FitzSimmons M. 2014. Local Ecosystem Service Use and Assessment Vary with Socio-Ecological Conditions: A Case of Native Coffeeforests in Southwestern Ethiopia. Human Ecology. 42(6): 873–883. https://doi.org/10.1007/s10745-014-9704-2
Tang L, He MZ, Li XR. 2020. Verification of Fractional Vegetation Coverage and NDVI of Desert Vegetation via UAVRS Technology. Remote Sensing. 12(11): 1742. https://doi.org/10.3390/rs12111742
Vrsmarty CJ, Pahl-Wostl C, Bhaduri A. 2013. Water in the Anthropocene: New Perspectives for Global Sustainability. Current Opinion in Environmental Sustainability. 5(6): 535–538. https://doi.org/10.1016/j.cosust.2013.11.011
Wang R, Gamon JA. 2019. Remote Sensing of Terrestrial Plant Biodiversity. Remote Sensing of Environment. 231:1-15. https://doi.org/10.1016/j.rse.2019.111218
Wang H, Yan SJ, Liang Z, Jiao KW, Li DL, Wei FL, Li SC. 2021. Strength of Association Between Vegetation Greenness and its Drivers Across China Between 1982 and 2015: Regional Differences and Temporal Variations. Ecological Indicators. 128(107831): 1-12. https://doi.org/10.1016/j.ecolind.2021.107831
Wang S, Wang J, Zhang L, Xiao Z, Feng W, Sun N, Li D, Chen B, Chen J, Li Y, Huang X, Wang M. 2019. A National Key R&D Program: Technologies and Guidelines for Monitoring Ecological Quality of Terrestrial Ecosystems in China. Journal of Resources and Ecology. 10(2): 105–111. https://doi.org/10.5814/j.issn.1674-764x.2019.02.001
Wei X, Wang N, Luo P, Yang J, Zhang J, Lin K. 2021. Spatiotemporal Assessment of Land Marketization and its Driving Forces for Sustainable Urban-Rural Development in Shaanxi Province in China. Sustainability. 13(14):7755. https://doi.org/10.3390/su13147755
Wu Z, Zhu D, Xiong K, Wang X. 2022. Dynamics of Landscape Ecological Quality based on Benefit Evaluation Coupled with the Rocky Desertification Control in South China Karst. Ecological Indicators. 138: 1-13. https://doi.org/10.1016/j.ecolind.2022.108870
Yan Y, Yu X, Long F, Dong Y. 2021. A Multi-Criteria Evaluation of the Urban Ecological Environment in Shanghai based on Remote Sensing. Geo-Information. 10(10): 688. https://doi.org/10.3390/ijgi10100688
Yang X, Scuderi L, Paillou P, Liu Z, Li H, Ren X. 2011. Quaternary Environmental Changes in the Drylands of China- A Critical Review. Quaternary Science Reviews. 30(23-24): 3219–3233. https://doi.org/10.1016/j.quascirev.2011.08.009
Yang JS, Wang YQ, August PV. 2004. Estimation of Land Surface Temperature using Spatial Interpolation and Satellite-Derived Surface Emissivity. Environmental Informatics. 4(1): 40-47. https://doi.org/10.3808/jei.200400035
Zandsalimi M, Bahrami B. 2022. Examining Changes in the Ecological Structure of Four Hills in Sanandaj using Object-Oriented Method and Metrics of Continuity and Complexity. Journal of Environmental Science and Technology. 24(10): 77-91. (In Persian). https://doi.org/10.22034/JEST.2021.59586.5330
Zareie Sh. 2019. Determining and Comparing the Degree of Watershed Vulnerability in the Sub-Watersheds of Samyan, Ardabil Province. Master’s of Sclence Thesis. University of Mohaghegh Ardabili, Ardabil. 115 p. (In Persian).
Zareie Sh, Hazbavi Z, Mostafazadeh R, Esmali Ouri A. 2020. Vulnerability Comparison of Samian Sub-Watersheds based on Climate Change Components. Physical Geography Research Quarterly. 112 p. (In Persian). https://doi.org/10.22059/jphgr.2020.283909.1007406
Zhang Y, Chen HYH, Reich PB. 2012. Forest Productivity Increases with Evenness, Species Richness and Trait Variation: A Global Meta-Analysis. Ecology. 100(3): 742–749. https://doi.org/10.1111/j.1365-2745.2011.01944.x